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1 Changes

April 2, 2000 Updated for name change from Yallcast to Yoid.

2 Introduction

This document specifies the Yoid Topology Management Protocol (YTMP). An overview of TYMP and its role in the
Yoid architecture can be found in “Yoid: Extending the Internet Multicast Architecture”. This specification assumes
the reader is familier with that document.

2.1 Document Status

This spec is very much a snapshot of a work in progress. In particular, we can expect YTMP to evolve considerably
as we try it under different applications and find what works and what doesn’t. what doesn’t. Except for a few
additions, this spec is considerably older than “Yoid: Extending the Internet Multicast Architecture”. The latter
represents the author’s latest thoughts on Yoid, so where the former differs from the latter, the latter can be assumed
to more accurately reflect the author’s intentions.

Having said that, this spec (or parts thereof) is a better representation of what has been implemented. In particular,
this spec contains a more general form of the intent-to-join freezing mechanism.

As for implementation, the following major parts of this spec have not been implemented as of this writing:
e Mesh topology (and broadcast transmission modes).
o Clustering
e Intent-to-join loop detection

e Member switching



3 Overview

YTMP automatically builds reasonably efficient shared tree and mesh topologies among a collection of hosts (presum-
ably hosts running a given application). A separate protocol, YDP (Yoid Distribution Protocol) is used to transmit
application data (content) over those topologies. YDP does not rely on IP-multicast, though it can use localized IP-
multicast, such as over a single LAN, where appropriate. Instead, the hosts themselves replicate and forward packets
over the topologies they have built.

Packets are transmitted host-by-host over the unicast “links” of the tree-mesh using either UDP (datagram transmission
mode) or over TCP or some TCP-variant running over UDP (stream transmission mode). Stream mode should be
used wherever possible, mainly because of its flow control attributes, but also because of its reliability. Unicast is used
either when two hosts in the tree are more than one (router) hop apart, or when the two hosts are communicating
over a point-to-point link.

Packets are transmitted over IP-multicast when multiple hosts are on a single shared-media such as a LAN. Datagram
transmission runs directly over UDP, and stream runs over a reliable IP-multicast transport protocol optimized for
small and local IP-multicast groups'. (This is relatively easy to do, compared to reliable IP-multicast over a wide
area.)

Note that stream transmission mode over YDP is not end-to-end reliable nor does it necessarily preserve end-to-end
ordering, though it does come close. In either case, YDP forwards content in units of application layer frames.

Each group is associated with a DNS name. Each group also has an identifying string associated with it. This string
is unique for the DNS name only. There are no special IP addresses (unicast or multicast) associated with the group
per se. All unicast frames are sent via each host’s unicast IP address. All IP-multicast frames are sent over a locally
assigned multicast IP address.

Each group has one or more rendezvous. The rendezvous run on the hosts named by the DNS name of the group,
and can therefore be learned with a DNS query for the group’s DNS name. Rendezvous are not necessarily members
of the group per se, but must know of some small number of members that are (where the term member refers to
a yoid host in the group). New members joining the group (newcomers) find a rendezvous through DNS, and then
find several members already in the group (if any) through the rendezvous. From these members they can find other
members, and in particular an appropriate member to join.

Thus, the bootstrapping, or group discovery, mechanism is DNS. This naming/discovery scheme allows any host to
individually create as many groups as it likes without coordination with other hosts.

Hosts can join the group either as transit or as stub members. Where possible, hosts are encouraged to join as transit
members. They should be stub members only in the cases where 1) they will not be in the group long enough to justify
being a transit, or 2) they do not have the resources (processing, bandwidth) to be transit members. An example of
the former is a dial-up host logging in to a mail distribution group to get the latest news. An example of the latter is
a laptop at the end of a dial-up link joining an audio/video conference.

The purpose of the tree topology is to transmit content as efficiently as possible. The tree, however, is fragile in that
the loss of any given member will partition it, albiet temporarily. The mesh topology is built to make the group robust.
The loss of any member or even small number of members will not partition the mesh. Therefore, broadcast over the
mesh is highly reliable, if not very efficient. Application content can be broadcast over the mesh where appropriate.
YTMP also uses mesh broadcast for various tree maintenance purposes (mainly partition discovery).

Figure 1 shows all of the components of the YTMP architecture. DNS is used to find one or more rendezvous, which
in turn know about members in the group.

3.1 Basic Tree Concepts

Figure 2 shows the structure of the tree. Again, each member in the tree is a host. The tree is a single shared tree?
for the entire group. The “links” between tree or mesh neighbor members are either 1) unicast multi-router-hop paths
through the internet (the arrows joining pairs of members), or 2) local IP-multicast groups (the arrow joining the LAN

Tn the remainder of this document, the generic term multicast generally refers to Yoid multicast. Where the context is not otherwise
clear, the term IP-multicast is used to refer specifically to IP multicast.
2 A shared tree is one whereby all members transmit and receive over the same tree.
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Figure 1: YTMP Architecture

with the member). The tree has no loops. When a member receives a yoid multicast frame, it (generally) forwards
the frame to all tree neighbors except that from which the frame arrived. (Note that use of the term “neighbor” alone
generaly is taken to mean “tree neighbor”.)

The arrows shown on the links in the Figure do not imply that frame forwarding is unidirectional: frames can go in
either direction. Rather, they are related to the control relationships between members. The automatic tree creation
and maintenance algorithms require that there be a parent/child relationship between members. The member at the
pointy end of the arrow in the Figure are the parent members. The member with no parent is the root member, and
members with no children are leaf members. Stub members are always leaf members.

Generally speaking, the child member is responsible for seeing to it that it, and by association all of its offspring,
remain attached to the rest of the tree. In particular, each member divides the set of all other members into two
groups: parent-side members and child-side members. Parent-side members are all members reachable via the parent.
Child-side members are all other members. It is the responsibility of each member to make sure that, when it decides
to or is forced to get a new parent, the new parent is among the set of parent-side members. Otherwise, the tree would
become partitioned.
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3.2 Frame Delivery Modes

There are five delivery modes for sending frames to other members. (Note that, strictly speaking, this is part of YDP.
It is included here primarily for the purpose of defining terms.)

Multicast: Frames are sent to all tree neighbors (parent and children) except the one from which it was received.
They may be sent either datagram or over a stream.

Unicast: Frames are transmitted to a single member in the tree. In the case of datagram, it is transmitted directly
to the member, even if the sender is not a neighbor of the member. In the case of stream, it is transmitted
neighbor-to-neighbor along the tree to the recipient. The reason for this is to prevent the recipient from having
a very large number of TCP connections, for instance because all members in the tree regularly send it frames.

Tree Anycast: This frame is randomly routed either to a neighbor other than the one from which it was received,
or delivered to the member’s upper layer — either the application or YTMP.

Mesh Anycast: This frame is randomly routed to any known member (neighbor or not), other than the one from
which it was received, for a certain number of hops, after which it is delivered to the member’s upper layer. This
mode may be run datagram or stream.

Broadcast: Each member transmits frames to all mesh and tree neighbors. Broadcast mode is available for datagrams
only (not streams). Frames are tagged with a unique identifier and remembered to prevent continuous forwarding
of the same frame. This mode is used, among other things, by the tree control protocol to detect tree partitions.

The main delivery mode is of course multicast. Unicast is useful in those cases where all application data should be
relayed through a single member (or its application) before being multicast. Examples of this include: a controller for
an audio/video multicast (to turn on and off the ability of listeners to transmit), and the moderator of a mailing list.

The information required in members for unicast delivery is obtained through the destinations multicasting their
member names, with all members remembering the name and, if stream mode, the reverse path. For scalability
reasons, there should not be too many members actively advertising themselves as unicast destinations.

The anycast modes have a role in the maintenance of the tree and mesh, in essence as a way to randomly find a
member in the topology, and is included solely for this purpose. One can, however, imagine various creative ways this
mode could be used by applications. For instance, email could be sent to a few random members to be screened (by
humans) for spamming.
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3.3 Locally Scoped IP Multicast “Links”

A general goal in Yoid is, to the extent possible, to minimize the load on any given member or (physical) link. One
way to do this is to have relatively small member degrees in the tree. This way, each member only has to replicate
and forward a few frames for each received, and the local (physical) topology is not flooded with traffic.

In the case of shared-media, such as LANs, small member degrees alone will not insure that the wire itself is not
overwhelmed with frame traffic. For instance, consider a case where 20 members are on the same wire, with one of the
members the child of a member off of the wire, and all others the children of other members on the wire. Even if the
maximum number of children for any given member is only two, a single frame transmitted over the tree would require
20 distinct transmissions of the same frame over the same wire (with only one of them actually being forwarded off
the wire by the router).

The solution to this problem is to use IP-multicast over a very local area—normally confined to the single shared-media
itself. The left side of Figure 3 shows a group of members belonging to the same group, and attached to the same
shared media (say, a LAN). This is called a cluster. One of the members is dynamically elected to be the parent
member, and is called the cluster head, or just head. It and only it finds a parent outside of the cluster. The remaining
members are by default children of the cluster head, are collectively called the cluster child, and are individually called
cluster feet or just feet (or foot if singular).

All members in the cluster transmit frames to each other over an IP multicast group. The time-to-live of the group
is set at 1, thus limiting transmission of the frames to the shared media itself. If reliability is required (as is normally
the case), a reliable multicast transport protocol is run over IP. While reliable multicast transport protocols over a
wide area and for large groups is an open research problem, reliable multicast over a single LAN is well-understood
and has been operational in many environments.

Generally speaking, the cluster acts as a single logical member in the topology. For instance, the cluster feet are
prevented from having children of their own. The cluster head counts the cluster child (the collection of feet) as a
single child, and is allowed to have additional children off the shared media. In this configuration, any given frame
croses the wire once for the cluster, once for the cluster head’s parent, and once each for any additional children the
cluster head may have.

In addition, the job of maintaining the mesh topology is spread out over the members of the cluster, in such a way
that the cluster, in total, has roughly the same number of mesh neighbors that a single non-cluster member would
have.

The right side of Figure 3 shows an alternative cluster configuration. This configuration is used for shared media
where the “uplink” bandwidth is small or non-existant, making it inappropriate or impossible for a member on the
shared media itself to be an effective transit member. Examples of such shared media include cable and satellite.



In this case, the IP multicast group associated with the cluster is allowed a time-to-live of 2 or possibly more, allowing
the transmissions to cross one router. The head of the cluster is administratively assigned. Its hello messages inform the
other members that it is an assigned cluster, and also what the IP time-to-live setting should be. In this configuration,
each frame crosses each shared-media segment only one time (excepting retransmissions due to frame loss). Note that
there can be more than the two shared-media segments shown in Figure 3.

Note that no other cluster configurations are allowed. In particular, we do not allow dynamically-elected clusters of
more than two router hops, and allow this only in the limited case of an administratively-assigned parent. There
are two primary reasons for this limitation. First, dynamic configuration of clusters beyond a single wire is complex,
especially considering that scoped groups generally have asymmetric connectivity (not all members of the group can
hear all others). Secondly, we have concerns about the throughput of reliable multicast protocols as groups become
large and widespread. Monitoring a given group for throughput, and trying to adjust the group size to keep it
acceptable, appears too complex to justify at this time.

This issue, however, can be revisited as experience is gained both with Yoid and with wide-area reliable multicast. In
particular, the idea of a flexible boundary between Yoid and IP multicast, dynamically adjusting IP multicast usage
to be more or less as appropriate, is attractive.

3.4 Basic Tree Forming Algorithms

The primary goal in forming the tree is to keep it connected. A secondary but important goal is for members that
are near each other in “internet distance” to be also near each other in the tree (in tree hops). Yet another goal is
to connect members so that they do not become bottlenecks in the topology. For instance, members with limited
bandwidth should be at the edges of the tree rather than in the middle.

If members never crashed and never left the tree, then building the tree would be trivial. Each member simply becomes
a neighbor with an existing member that does not already have a full complement of neighbors. This way, the tree
would be built-up one branch at a time, would never have loops in the topology, and would never be partitioned.

And in fact, this is our basic approach. Newcomers (new members joining the tree) simply find a suitable member
already in the tree and attach. The newcomer considers its initial neighbor to be its parent (see Figure 2). Its parent,
in turn, considers the newcomer to be its child.

For various reasons, however, the topology needs to change from time to time, even when no newcomers are joining.
One reason is that members in the tree may wish to change parents in order to optimize the topology. Another
reason is that members may crash or for other reasons abruptly leave the tree. The former case represents a planned
topology change. This is described in the following section (3.4.1). The latter case requires a different algorithm, and
is described in the subsequent section (3.4.2).

3.4.1 Planned Topology Changes
In order to maintain a connected tree when changing parents, each member follows a simple pair of rules:

1. Each member at all times keeps one and only one parent (with the exception of the root member itself).

2. When a member replaces its current parent with a new parent, it selects as its parent a member that is not one
of its descendents (a child, a child’s child, etc.).

So for instance, looking at Figure 2, if member C were to attach to a new parent, it should select one of the members
from the set of members labeled as its parent-side members. As long as it selects one of these, the tree will remain
loop-free and connected (upper part of Figure 4).

The tricky part comes when we consider that multiple members may be changing parents at the same time. For
instance, say that C decided to attach to member D (for instance, because member D is much closer to it than its
current parent). If at the same time member D were to select as its new parent member A (which it theoretically
could do because member A is on member D’s parent-side), then the result would be the topology shown in the lower
part of Figure 4. This tree is partitioned.

One way to prevent this is reduce the valid set of new parents to only those of a member’s ancestors (parent’s parent,
etc.). With this rule, D would not have considered A to be a valid replacement parent, and the partition would not
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Figure 4: Examples of Changing Parents

have occurred. By the same token, C would also not have considered D to be a valid replacement. Which illustrates
the problem with this constraint—the flexibility for optimizing the topology, or staying within a small member-degree
constraint.

Another approach is to simply disallow more than one change at a time in the tree. For instance, if member C changes
parents first, after the change member A is no longer on D’s parent-side, and D would not select it as a new parent.
Likewise, if member D changes first, member D would then be on member C’s child-side, and member C would not
select it as a new parent.

This is more-or-less the approach we take, but rather than only allow a single change at a time for the whole tree, we
instead prevent only those changes that would in fact result in loops/partitions. Looking again at the case where C
gets a new parent, we can see that the problem occurs only when any member from C’s parent-side tries to select a
parent from C’s child-side. Simultaneous changes limited to within the set of C’s parent-side members, or to within
the set of C’s child-side members, would not result in a loop/partition.

Observing that the only path on the tree from C’s parent-side to C’s child-side goes through C, there is a relatively
simple way to prevent such simultaneous changes:

1. We require all changes to be communicated through the tree, and

2. a changing member prevents any other changes from being communicated from its parent to itself.

So, getting back to our example, D would need to communicate its intent to change parents through the tree to
member A. This path includes the root, C’s parent, member C, member B, and finally member A itself. Since C is
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already in the process of changing, however, it would not allow D’s parent change notification to pass from its parent
to itself, but instead would return a message to D disallowing the change. If members C and D try to communicate
intent to change messages along the tree at the same time, they would both be rejected, and both members would
back-off for a short random time before trying again.

This short description gives the basic approach for maintaining the tree. Of course many details are left out, and these
can be found in the protocol description itself.

The only other thing we should mention here is the method for optimizing the tree. When a newcomer joins the tree,
it puts a premium on joining as quickly as possible, versus finding the nearest member to join. This way, it can start
receiving data, albeit over a less efficient path than it might otherwise have, as soon as possible. Once it joins, then
it periodically searches among its parent-side member for a better (closer) parent.

This is done by randomly selecting a parent-side member through anycast frame delivery, and pinging that member
to determine the round-trip delay. If it is smaller than its current parent, then it changes to the new parent. (If a host
doesn’t have adequate clock resolution to measure delays, it could send a frame to both its parent and the selected
member and see which returns first.) Over time, as it gets harder and harder to find better parents, the member tries
less and less frequently. A member’s activity then is fairly heavy at first, as it finds and joins new parents, but quickly
tapers off as it approaches it’s optimal place in the tree.

3.4.2 Forced Topology Changes

The above parent-changing algorithm clearly won’t work if a member is getting a new parent because its previous
parent crashed. The intent-to-change message would not have an intact path to traverse. One could consider sending
the intent-to-change instead to the next member after the (now down) parent on the path to the intended parent, but
this member may also have crashed. In general, it is easiest to assume that almost any arbitrary set of failures may
have taken place, and to have a general solution for repairing an arbitrarily broken tree.

Towards that end, we note that an intact tree has the following characteristics:

1. Exactly one member is a root (has no parent).
2. Every other member has exactly one parent.

3. The root path for any given member (the path consisting of the member’s ancestors) terminates at the single
root (is loop free).

Thus, each member strives to make sure that these three characteristics are maintained. In particular, whenever a
member is parent-less, it considers itself to be the root of the tree, but always assumes that the tree may be partitioned
and that other roots may exist. Therefore, it periodically tries to determine if there are other roots/partitions, and
tries to join a member in another partition if one is discovered.

Exactly how it does this depends on the likelihood that other partitions exist. For instance, if a member was formerly
not a root, but suddenly became one because its parent crashed, then it knows that there are probably other partitions.
It also knows one or more members from the other partitions because of the mesh topology. It tries to join one of
these members.

To insure that a loop will not form, it transmits a frame along the root path of the intended parent. If there is a
loop, the frame will return to itself. In this case, the member waits for a short, random period, and tries again (with
either the same prospective parent or a different one). (This is a rather over-simplistic description, but gives the basic
flavor.)

If on the other hand a root member cannot find another partition after a reasonable effort, then it assumes that with
high (though not 100%) probability it is the “true” root. In this case, it periodically sends an I-am-the-root message to
the rendezvous. If there are in fact multiple roots, the rendezvous will detect it, and can inform the roots accordingly.

This safeguard obviously depends on the rendezvous being up, which may not always be the case. (In general, the
weak-link of YTMP is its dependence on the rendezvous and their DNS servers.) An additional way to check for
partitions is for the root to broadcast an I-am-the-root message over the mesh. Because of the rich connectivity of the
mesh, this message has a high probability of reaching other partitions. Roots in the other partitions then recognize
that there is a partition.
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3.4.3 Member Cluster Configuration

Auto-configuration of shared-media member clusters works roughly as follows. For each group, there is an algorithmi-
cally generatable IP multicast address (produced via a hash of the group ID and related information). Each member,
when it joins a group, joins the multicast group associated with the generated IP multicast address. It periodically
transmits a hello message over the multicast group (with time-to-live 1), and listens for such messages as well.

In the case of dynamically selected cluster heads, when three or more members discover each other, one of them
(generally the one with greatest capacity and longest up time) selects itself as the cluster head, and the cluster is
formed. In the case of administratively assigned cluster heads, the head’s hello message indicates that it has been
administratively assigned, and indicates the IP time-to-live that the feet should use as well.

3.5 The Rendezvous

The purpose of the rendezvous is to bootstrap newly joining members (newcomers) into the group. They do this by
continuously maintaining knowledge about some number of existing members in the group. If an application on the
same host as the rendezvous has itself joined the group, then the rendezvous can know about other members on the
group simply through the normal process of being a member in the group. If no application on the same host has
joined the group, however, the rendezvous must make specific efforts to monitor the group and maintain knowledge
about members in the group.

The rendezvous initially learns about newcomers because they query it for information about the group. The ren-
dezvous periodically queries the members in knows about to learn of still more members. When a member quits
the group, it should also inform the rendezvous of this, so that the rendezvous can remove it from its list of known
members. Given that members may quit the group abruptly, however, the rendezvous should time out members from
its list as it learns of new members in any event.

4 Position of YTMP

The position of YTMP, relative to other protocols as it might appear in a typical implementation, is shown in Figure 5.
Note that, while YTMP is certainly effected by actions of the application (create group, etc.), it may be convenient to
limit the APT with the application to YDP, and let YDP pass these actions onto YTMP where appropriate. As such,
YTMP interacts only with YDP (and uses YDP to transmit YTMP messages to other members).

5 YTMP Message Formats

This section gives the formats for the various YTMP control messages. Each control message is transmitted in a single
YDP frame, either over datagram or stream depending on the message type.

YTMP messages are denoted in the YDP frame header by the value of 0 in the Protocol field. The YTMP message
itself immediately follows the YDP frame header. The YDP frame header of all YTMP messages must contain the
frame source option indicating the initiator of the message.

All YTMP messages have a fixed part, formatted as shown below:

These fields are defined as follows:

Q/Message Type: Indicates the type of message. The first bit (Q) is 0 if the message is a query, and 1 if the message
is a reply.

Message Subtype: Certain messages set this field to some non-zero value to convey additional information. Except
for these cases, it is set to 0 and ignored upon receipt.

Flags: The following flags are defined:

Member Type (bit 17): Set to 1 if transit member. Set to 0 if stub member.
Root (bit 18): Set to 1 if the member is a root. Set to 0 otherwise.
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Figure 5: Position of YTMP

1 2 3
12345678901234567890123456789012

+ ———— -—— i -+ -—+

IQIMessage Type |Message Subtypel Flags I
+ + - + -+
| Receiver Relationship | Reserved |
R + —4————— + -—+
| |
+ Message ID +
| |
+ + e + -—+

Foot (bit 19): Set to 1 if the member is currently a foot. Set to 0 otherwise.
Head (bit 20): Set to 1 if the member is currently a head. Set to 0 otherwise.
Reserved (bits 21 - 32): Transmit as zero, ignore upon receipt.

Receiver Relationship: This indicates what the sender considers the relationship of the receiver to the sender to
be. This field is used primarily to detect when two members don’t agree on the status of the other. This can
happen due to race conditions resulting from network delays. The following values are defined:

None (0): The relationship is undefined.

Parent (1): The receiver is the parent of the sender.
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Child (2): The receiver is the child of the sender.
Rendezvous (3): The receiver is the rendezvous.
Prospective Parent (4): The receiver is a prospective parent of the sender.
Relative (5): The receiver is a relative of the sender.
Prospective Relative (6): The receiver is a prospective relative of the sender.
Mesh Neighbor (7): The receiver is a mesh neighbor the sender.
Message ID: This is an opaque field, set by the member transmitting the query, and returned unchanged by the
member replying to the query. The values of all zeros and all ones are reserved, and should not be used in queries

or replies. The value 1 is used in uninitiated replies, and should not be sent in queries. All other values can be
used in the query (and corresponding reply).

Replies received with an unrecognized Message ID, or with a recognized Message ID attached to the wrong
Message Type or transmitted member, are silently discarded. (This can happen, for instance, when a foot
receives an YTMP message meant for another foot over the cluster stream.)

The Message Type values are listed in the following table:

Message Value
Get Member Information 1
Join 2
Quit 3
Switch 4
Intent to Join 5
Header Option Acknowledge 6
Root Path Trace 7
Error 8
Root Announcement 9
Pairwise Knowledge 10
Member Down 11
Extend Reservation 12
Cluster Announce 13

5.1 Record Header Fixed Part

Following the YTMP Message fixed part is a series of zero or more records containing the information required for the
message. Each record starts with the fixed part shown below:

1 2 3
12345678901234567890123456789012

—————+ - + + +———t———+

+

| Record Type | Record Length |Rsv|Act]|

+ + + - + + +—_—
—_——— [ $ —_ + } } +

The fields are defined as follows:

Record Type: Indicates the type of record. Note that every record has a unique Record Type value. Strictly
speaking, this is not really necessary, since records can always be, and usually are, parsed in the context of a
given message, and therefore only have to be unique for a given message. But, we do it this way anyway.

Rsv: Reserved, transmit as zero, ignore upon receipt.
Act: This indicates what action should be taken if the option is not recognized, as follows:

Ignore Silently(0): Ignore the option, but continue processing other options and process the message. Don’t
notify the sender.
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Ignore With Notification (1): Ignore the option, but notify the sender that the option was not recognized
with the YTMP Error Message of type Type Unrecognized.

Drop Silently (2): Drop the entire message, don’t notify the sender.
Drop With Notification (3): Drop the entire message, and notify the sender.

Record Length: The length of the record, in units of 32-bit words, including the fixed part.

This fixed part allows members to parse all records even if they do not recognize some of the record types. In this
way, the contents of a given message type can evolve.

5.2 Get Member Information Message (1)

This query/reply message gives various information about the member being queried. It is used for various purposes,
including when determining if a member should be considered as a new parent, and when pinging an existing neighbor
to make sure it is still alive. It can be sent over either datagram or stream, depending on its purpose. The reply
should generally be returned the same way, however a stream reply can follow a datagram query in the case where
the reply is relatively long (would require several IP packets to transmit). Also depending on its purpose, it may be
transmitted either as unicast or anycast. A query received via anycast, however, must be returned using unicast.

The Message Type field of the YTMP fixed part is 1.
5.2.1 Get Member Information Query Record (1)

The only record in the Get Member Information query is the Get Member Information Query Record, and is formatted
as shown below:

1 2 3
12345678901234567890123456789012
+ ——t — TR - —
| 1 | 2 |01 31
o A —— FR—— - +
I Request Mask I
oo S —— FR—— - +

The fields are defined as follows:

Fixed Part: The Record Type is 1, the Action is 3 (drop with notification), and the Record Length is 2.

Request Mask: A bit-mask specifying the information being requested. A 1 in the bit field indicates that the defined
information should be returned in the reply. The bits are defined as follows:

New Neighbor Capacity (1): The number of new neighbors (transit and stub), in addition to the ones that
it already has, that can be obtained by the queried member. (Note that the term “neighbor” alone generally
refers to a tree neighbor, though it can sometimes refer to both tree and mesh neighbors.

Transit Neighbor List (2): A list of the queried member’s transit neighbors and related information. When
this call is made to the rendezvous for the purpose of bootstrapping into the group, then arbitrarily selected
members are listed instead of neighbors.

Stub Neighbor List (3): A list of the queried member’s stub neighbors and related information.
Root Path (4): The list of members on the tree path from the queried member to the tree root.

Statistics (5): Various statistics about the group (as known by the member being queried), such as the number
of frames transmitted, frequency of joins/quits, age of the group, and so on.

Reverse-Path Source Codes (6): The reverse-path enabled Source Codes for all sources reachable via all
other neighbors.
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Group Information (7): Basic configuration information for the group, such as the minimum buffer size and
minimum throughput rate.

Child New Transit Neighbor Capacity (8) A list of zero or more children that have reported new transit
neighbor capacity for themselves or for their own children.

Child New Stub Neighbor Capacity (9) A list of zero or more children that have reported new stub neigh-
bor capacity for themselves or for their own children.

Bits 10 - 32: Reserved. Transmit as zero, ignore upon receipt.

Reserved: Transmit as zero, ignore upon receipt.

5.2.2 Get Member Information Reply

A Get Member Information Reply can be sent with or without being initiated by a Get Member Information Query.
For instance, a parent may send an unrequested Get Member Information Reply anytime information sent in a previous
Get Member Information Reply has changed. The various records included in the Get Member Information Reply can
be attached in any order.

5.2.3 New Neighbor Capacity Record (2)

If New Neighbor Capacity was requested, then the New Neighbor Capacity Record is included in the reply. It is
formatted as shown below:

1 2 3
12345678901234567890123456789012
+ —————+ - e -——+ -+
I I 3 o1l 3|
e e - B +
| Transit Capacity [T| Stub Capacity [S|
+ —————+ -— - -+ -+

The fields are defined as follows:

Fixed Part: The Record Type is 2, the Action is 3 (drop with notification), and the Record Length is 3.
Transit Capacity: The number of additional transmit members that can still be accepted as neighbors.

T: This field is set to 1 if at least one child has reported either non-zero Transit Capacity, or a non-zero T bit.
Otherwise it is set to 0.

Stub Capacity: The number of additional stub members that can still be accepted as neighbors.

S: This field is set to 1 if at least one child has reported either non-zero Stub Capacity, or a non-zero S bit. Otherwise
it is set to 0.

5.2.4 Member List Records (3/4/5/17/18)

This section gives the format for the five types of member lists that can be returned in the reply: the Transit Neighbor
List (3), the Stub Neighbor List (4), the Root Path (5), the Child New Transit Neighbor Capacity List (17), and the
Child New Stub Neighbor Capacity List (18).

These correspond to bits in the Request Mask of the query. If the list is a Transit Neighbor List, then the first listed
must be the parent. If the member has no parent (either because it is the root, or because it temporarily has no
parent, that is, it is an orphan), then the first listed member must be a null entry, as defined below.

If the list is a Root Path, the entries are listed in order of parent, parent’s parent, etc., up to and including the root
member.



17

In the case of the Child New Transit Neighbor Capacity and Child New Stub Neighbor Capacity Records, a child may
be included in this list if and only if it has either 1) reported that it itself has new neighbor capacity of the corresponding
type (transit or stub), or has reported that its offspring has capacity of the corresponding type (through the T or S
bit of the New Neighbor Capacity Record). The replying member is not required to list all such children. Typically
one or a few will suffice.

The five records have the same format, differing only by their record types. They are formatted as shown below:

1 2 3
12345678901234567890123456789012

+ + bo———— + —-—+

I 3/4/5/17/18 I Record Length o1 3]
- + —————= + —-—+
| Number of Entries | Reserved |
- + —4————= + —-—+
| First Member Entry
+ + + /
|
/ + + -—+
| Second Member Entry
+———= + -+-—=/
I
/ + + -—+

| Nth Member Entry
===/

The fields are defined as follows:

Fixed Part: The Record Type one of 3, 4, 5, 17, or 18. The Action is 3 (drop with notification), and the Record
Length is variable.

Number of Entries: The total number of entries listed in this record.

Reserved: Transmit as zero, ignore upon receipt.

Each member entry listed has the format shown below:

1 2 3
12345678901234567890123456789012
+ + O + —4
| Entry Length | RTT I
+ + R + —+
| UDP Port Number | TCP Port Number |

+———= + —+-——— + -+

IDP Port Number |

+ + + —4

+ - + -+

[
| Reserved | Member Name Length |
I

Member Name ....
+———= + -t /

| Zero Padding
/ + + -—+

The fields are defined as follows:
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Entry Length: The length of this entry, in 32-bit words.

RTT: The estimated average RTT time, in microseconds, for this neighbor, measured over a reasonably recent time
period. The value 0 is used for any RTTs of less than one microsecond. The value 16777215 (all ones) is reserved
to mean that the RTT is unknown. The value 16777214 is used to encode any RTTs equal to or greater than
16777214 microseconds (slightly less than 17 seconds).

UDP Port Number: This is the UDP port number over which the listed neighbor will receive datagram frames for
the given group.

TCP Port Number: This is the TCP port number over which the listed neighbor will accept connections for stream
frames for the given group. This field must be set to 0 if the member prefers using yTCP over TCP.

IDP Port Number: This is the IDP port number over which the listed neighbor will accept frames. This IDP Port
Number is learned from the Listen IDP Port of the IDP header.

Reserved: Transmit as 0, ignore upon receipt.
Member Name Length: The length, in bytes, of the Member Name (not including padding).

Member Name: The DNS name of the listed member. It is padded out, if necessary, to an integral 32-bit boundary
by zeros.

A null entry contains the following values:

Entry Length: 1.

RTT: 16777215 (unknown).
UDP Port Number: 0.
TCP Port Number: 0.
IDP Port Number: 0.
Member Name Length: 0.

Member Name: None.

5.2.5 Statistics Record (11)

If Statistics is requested, then a Statistics Record is included in the message. It is formatted as shown below:
The fields are defined as follows:

Fixed Part: The Record Type is 11, the Action is 3 (drop with notification), and the Record Length is variable.
Number of Entries: The total number of entries listed in this record.

Reserved: Transmit as zero, ignore upon receipt.

Entries: Each Statistic starts on an integral 32-bit boundary, and is formatted as shown below:
These fields are defined as follows:

Name Length: The length, in bytes, of the Statistic Name, not including padding.
Value Length: The length, in bytes, of the Statistic Value, not including padding.

Statistic Name: The name of the statistic, padded out to an integral 32-bit boundary with zeros. The name consists
of the printable subset of ASCII characters, including spaces.



1 2 3
12345678901234567890123456789012
o o - B T +
| 11 | Record Length | o1 31
+ —— —-— = —-——+ —-—+
| Number of Entries | Reserved |
o o o e +
| First Statistic
o o +-—/
I
[---——= + —-—— —4-= -—+
| Second Statistic
o o +-—=/
[-———- o —+-—- -—+
I Nth Statistic
o o +-—=/
|
/- + -—— —+—- -—+
1 2 3
12345678901234567890123456789012
o o - B T +
| Name Length | Value Length |
+ —— —-— = —-——+ —-—+
| Statistic Name ...
+ —————t —-—— + /
| Zero Padding |
/ + + -—+
| Statistic Value ...
o o +-—=/
| Zero Padding |
/ + + -+
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Statistic Value: The value of the statistic, padded out to an integral 32-bit boundary with zeros. The name consists
of the printable subset of ASCII characters, including spaces. If the value is a number, the encoding is the same
as that expected by the C library atof () function.

The following table gives the currently defined statistics:

Name Value Format
Outgoing Frames per Second, Lifetime Average Number
Outgoing Frames per Second, Hour Average Number
Outgoing Frames per Second, Minute Average Number
Incoming Frames per Second, Lifetime Average Number
Incoming Frames per Second, Hour Average Number
Incoming Frames per Second, Minute Average Number
Neighbor Changes per Hour, Last Hour Number
Neighbor Changes per Hour, Lifetime Average Number
Member Age, in Seconds Number
Maximum Available Bandwidth (Bytes per Second) Number

The Names given here are case insensitive, but otherwise must be encoded exactly as shown, with exactly one space

between text, and no white space leading or trailing.
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5.2.6 Group Information Record (10)

If Group Information was specified in the query, this record is included in the reply. This record is formatted identically
to Statistics Record, except that the Record Type is 10 rather than 11. This record is typically used by the Rendezvous
to convey basic configuration information to a newcomer (see Section 7.1).

The following table gives the currently defined types of group information:

Name Value Format
Discard Threshold, Bytes per Second Number
Minimum Buffer Size, Bytes Number
Frame Discard Age, Milliseconds Number

5.2.7 Reverse Path Source Codes

If Reverse Path Source Codes was specified in the query, the Header Option Record, defined in “Yoid Distribution
Protocol (YDP) Specification”, is used to transmit the Reverse-Path Source Codes. One record is included for each
Reverse-Path Source Code.

Each record contains the exact Header Option that would normally be attached to a content frame to convey the
Source Code.

5.2.8 Child New Neighbor Capacity Records (17/18)

The Record Type of 17 refers to the Child New Transit Neighbor Capacity Record. The Record Type of 18 refers to
the Child New Stub Neighbor Capacity Record. These records are returned if Child New Transit Neighbor Capacity
or Child New Stub Neighbor Capacity, respectively, were requested in the query.

The format for both of these records is the same as that of the Member List Records (Record Types 3 and 4,
Section 5.2.4). A child may be included in this list if and only if it has either 1) reported that it itself has new neighbor
capacity of the corresponding type (transit or stub), or has reported that its offspring has capacity corresponding type
(through the T or S bit of the New Neighbor Capacity Record). The replying member is not required to list all such
children. Typically one or a few will suffice.

5.3 Join Message (2)

The Join Query is sent by a member that wishes to become the child neighbor of another member. It is sent only
after the prospective child has verified that the join will not result in a loop/partition of the tree, and will be accepted
with high probability (see Section 8.1). It is always sent over a frame stream — one that has usually already been
established.

The Reply either accepts or rejects the request. It is carried over the same stream.
The Message Type field of the YTMP fixed part is 2.

5.3.1 Join Query Record (6)

The Join query always contains a Join Query Record, which is formatted as shown below:

1 2 3
12345678901234567890123456789012
+ + - + -—+
I 6 I 2 o1 3]
+ + o= + -—+
| Member Type |  Join Type | Reserved I
+———= + —————= + -—+

The fields are defined as follows:
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Fixed Part: The Record Type is 6, the Action is 3 (drop with notification), and the Record Length is 2.
Member Type: Set to 1 if the child is a transit member, set to 0 otherwise.

Join Type: This field specifies the context of the join. The context impacts the criteria for accepting or rejecting
the join. The following values apply:

Coordinated (0): Joining as part of a coordinated neighbor change, or as a newcomer.

Emergency (1): Forced emergency (non-coordinated) join.

Reserved: Transmit as zero, ignore upon receipt.

5.3.2 Reservation Record (20)

The Join query may contain a Reservation Record. This is used by the joining member to identify the reservation
under which it is joining. This is used in the case where a head is joining the same parent used by the previous head.

It is formatted identically to the Member ID Record (Section 5.11.1), except that the Record Type value is 20.

5.3.3 Replacement Record (25)

The Join query may contain a Replacement Record. This causes the receiver of the Join to simply replace the child
named in the record with the sender of the Join Message. It is used when a new head (the sender of the Join) is
replacing its previous head (the member named in this record) as the child of their parent (the receiver of the join).

When the receiver of the Join accepts the Join, it (directs YDP to) all at once stop sending frames to the replaced
child and start sending them to the new child. As a result, no frames in the direction of parent to child are dropped.
YDP also stops receiving frames from the replaced child and starts receiving frames from the new child. Since the
two children are not exactly synchronized, this may result in dropped or duplicated frames, but it does not result in
a loop. It also sends a Quit reply to the replaced child, and drops the stream connection.

It is formatted identically to the Member ID Record (Section 5.11.1), except that the Record Type value is 25.

5.3.4 Join Reply Message Subtype

The Message Subtype of the Join Reply is interpreted as an acknowledgement code. Its values are defined as follows:

Accept (1): The Join request is accepted.
Other Reason (2): The join request was rejected for a reason other than those listed below.

No Remaining Neighbor Capacity (3): The join request was rejected because there was no remaining neighbor
capacity. This could happen if the queried member obtained more children between the Get Member Information
and Join messages.

Root Path Invalid (4): The join request was rejected because the requesting member is in the root path of the
requested member.

Replacement Invalid (5): The member named in the Replacement Record is not a current child.

Orphan (6): The queried member is in a persistent Orphan state. That is, it has run the Neighbor Capacity Search,
but was unable to find capacity or arrange a switch.

A Join query is never accepted if the querying member is in the root path of the replying member. If the Join Type
of a query is Coordinated, the replying member should not accept the Join if:

¢ it has no new neighbor capacity of the same type as the querying member, and
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e it is not holding a reservation for the querying member. The querying member can claim a reservation if either
it has the same name as the reservation, or it has attached a Reservation Record with the same name as the
reservation.

If on the other hand the Join Type of the query is Emergency, the replying member should accept the query even

if it has no new neighbor capacity. In this case, however, it should send an Anticipated Quit back to the new child,
causing it to find another parent quickly.

5.3.5 Root Path Record

If the Join is accepted, then the Root Path of the replying member must be included with a Root Path Record. The
syntax for the Root Path Record is shown in Section 5.2.4. If the Join is rejected, this record is not attached.

5.3.6 Error String Record (7)

If the Join is rejected, a text string describing the reason can optionally be attached to the Message using this Record.
It is formatted as shown below:

1 2 3
12345678901234567890123456789012
== + - + -+
| 7 | Record Length | o1l 3|
== + ———— = + -+
| String Length | String ...
+-——= + —4————— +-——==/

| Zero Padding I
/ + + -—+

The fields are defined as follows:

Fixed Part: The Record Type is 7, the Action is 3 (drop with notification), and the Record Length is variable.
String Length: Gives the length, in bytes, of the string (not including padding).

String: The text string, consisting of the printable subset of ASCII characters. It is padded out, if necessary, to an
integral 32-bit boundary by zeros.

5.4 Quit Message (3)

This message has three purposes. First, it is used by a child member to inform its parent that it is disconnecting from
the parent. This may happen either because the child has found a new parent, or because the child is leaving the
group altogether. Second, it is used by a child member to inform its parent that another member will replace it as
the parent’s child. This is used when a head is being replaced by another. Finally, it is used by a parent member to
inform its children of an anticipated quit, in order to give the children a chance to find new parents in a coordinated
way.

Unlike most other messages, the Quit message has no Reply form. This is because the receiver of a Quit message has
no choice but to accept it. Reception of the Quit query, which must be transmitted via a stream, is acknowledged
directly by TCP or yTCP.

The Message Subtype field of the Quit Query must be set to one of three values:

Anticipated (1): This is sent from the parent to the child as a warning that the parent plans to leave the group,
and so the child should immediately find a new parent.



23

Completed (2): This is normally sent from the child to the parent to inform the parent that it is quitting. Normally,
the child will have already gone through the entire process of finding a new parent, informing its own children of
its new root path, and starting the exchange of data traffic with the new parent. This message simply informs
the (now former) parent of the changed status. This message may also be sent from a parent to a child, for
instance because errors were received from the child, or because the application related to the parent requested
a hard quit. Obviously this should be avoided where possible.

Replaced (3) This is sent from the child to the parent, essentially authorizing the parent to accept the Join from the
replacement child. Application frames are continued to be sent from the parent to the child until the replacement
child Joins.

5.4.1 Reservation Record (20)

The Completed form of the Quit Message, when sent from child to parent, may contain a single record, the Reservation
Record. The record contains the Member ID of the member holding the reservation. This causes the parent, for a short
time (on the order of 2 minutes) to reject any join requests from Members other than the one holding the reservation.
It also causes the parent to not advertise the reserved capacity in New Neighbor Capacity records.

It is formatted identically to the Member ID Record (Section 5.11.1), except that the Record Type value is 20.

No acknowledgement is received as to whether or not the reservation will in fact be made.

5.4.2 Replacement Authorization Record (26)

This record names the member that is authorized to replace the sender of the Quit message. It is formatted identically
to the Member ID Record, with the exception that it has a Record Type of 26.

5.5 Switch Message (4)

The purpose of this message is for a member to arrange to take the place of another member (attach to the other
member’s parent in lieu of the other member). It is sent to the member being replaced. This is done in order to
optimize the topology in the case where the new parent has no new children capacity. The member being replaced
normally, but not necessarily, attaches to the member that initiated the switch.

The Message Subtype is treated as a bitmask in the query, as follows:

Coordinated (Bit 9): Set to 1 if this is a coordinated switch. Set to 0 if it is an emergency switch.

Preliminary (Bit 10): Set to 1 if this switch request is preliminary, meaning that the replyer should not actually
make the switch, but rather should only indicate if it is willing to make the switch. Set to 0 otherwise.

Reservation (Bit 11): Set to 1 if the replyer should make a reservation for the queryer when the replyer quits its
parent. Set to 0 otherwise.

5.5.1 Join Target Record

This record indicates to the replyer which member will become available for it to join. The replyer is not required to
join this particular member. In a tree with little remaining new neighbor capacity, however, this is useful information.
Note that the join target may not have new neighbor capacity at the time this query is made. Inclusion of the join
target in this record implies that the queryer intends to free the new neighbor capacity and reserve it for the replyer.

It is formatted identically to the Member ID Record, with the exception that it has a Record Type of 21.
5.5.2 Switch Message Reply
There may be a significant delay between the switch query and its corresponding reply. This is because the queried

member should go through the process of determining if it can find a satisfactory new parent, and joining that parent.
The Switch Reply Message assigns the following values to the Message Subtype:
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Preliminary Accept (1): The replyer is willing to accept the preliminarily requested switch, but otherwise has done
nothing.
Accept (2): The switch request has been accepted, and the replyer has quit its parent.

Reject (3): The switch request has been rejected. The replyer will not quit the parent.

5.5.3 RTT Change Record (14)

Both the Switch Message query and reply may contain an RTT Change Record. This record gives the change in RTT
latency expected by the member transmitting the query or reply were it to make the suggested switch. This is used
to help determine the value of the switch, which should result in an overall benefit if it is to be made.

It is formatted as shown below:

1 2 3
12345678901234567890123456789012
e O R e +
| 14 | 2 | o1l 31
e O O e +
| RTT Change | Benefit/Loss |
O + ————— + —4

The fields are defined as follows:

Fixed Part: The Record Type is 14, the Action is 3 (drop with notification), and the Record Length is 2.

RTT Change: The estimated change in RTT time, in microseconds, that the sender of the record would benefit/lose
were it to make the suggested change. The value 0 is used for any changes of less than one microsecond. The
value 16777214 is used to encode any changes equal to or greater than 16777214 microseconds (slightly less than
17 seconds).

Benefit /Loss: This field is set to 1 if the RTT Change is a benefit (gets lower), and 0 if it is a loss (gets larger).

5.6 Intent to Join Message (5)

This message is used to insure that a planned parent change will not result in a tree partition/loop. The query is sent
HxH along the tree path from the joining member to the prospective parent.

If there is any member along that path that has frozen joins with its neighbor, or if the path itself is specified incorrectly,
the reply to the Intent to Join is negative. Otherwise, it is positive, and the joining member can subsequently join its
new parent. The reply is transmitted directly from the replier to the querier.

5.6.1 Join Path Record (8)

The syntax of the Join Path Record is identical to that of the Root Path Record (Section 5.2.4), and is not repeated
here. The differences are that 1) the Record Type of the Join Path Record is 8 (rather than 5 for the Root Path
Record), and 2) the path itself is not to the root but rather to the target of the planned join. The message itself is
forwarded member-to-member along the path specified in this record.

Note that the information in the YDP Frame Source Option and in the query message fixed part refers to the original
source of the message, not to the member that happens to be forwarding the message.

5.6.2 Intent to Join Reply Message Subtype Values

The reply can be sent by any member in the query’s Join Path Record. If it is sent by any member other than the
final entry of the Join Path Record (that is, the prospective parent), it must be negative. The prospective parent may
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send either a negative or positive reply. The reply is transmitted directly to the original querying member, as specified
by the contents of the YDP Frame Source Option and the message fixed part of the query.

The values for the Message Subtype fields are as follows:

Accept (1): Set to value 1 if the Intent to Join is successful.
Other Reason (2): The Intent to Join request was unsuccessful for a reason other than those listed below.

Joins are Frozen (3): The Intent to Join was unsuccessful because the intended join would conflict with a join
already in progress.

Join Path Invalid (4): The Intent to Join was unsuccessful because the path in the Join Path Record is invalid
(adjacent entries in the Join Path Record are not neighbors).

5.7 Root Path Trace Message (7)

This message is used during an emergency parent change to test for loops or partitions before actually joining the new
parent (see Section 8.1). In this case, the query form is initially sent from the member that wishes to initiate the Root
Path Trace (the parent-less member) to the member from which the root path will be traced (the prospective parent).

This message may also be initiated by a member that suspects that it is in a topology loop, and wishes to check (for
instance, because of an excessive number of Hop Count Expired messages, Section 8.9). In this case, the initiating
member is also the member from which the root path is traced, and the member treats it as though it had received it
from another member, as described below.

The Message Subtype field must be set to one of the following two values:

Parent Only (1): Forward the message to the current parent only (the parent with which application frames are
being exchanged). The message must not be forwarded to a prospective parent.

Parent /Prospective Parent (2): Forward the message to the parent or the prospective parent.

Each member that receives a Root Path Trace query transmits it either 1) to its parent if it has one, or if the Message
Subtype allows, 2) to its prospective parent. If the member has no parent/prospective parent to forward the query
to, then it considers itself the root, and transmits a Root Path Trace reply to the initiator of the query.

The YDP Frame Source Option and the fixed part of the Root Path Trace message are set by and contain information
about the initiator of the query. These parts are not changed as the message progresses along the root path.

The Root Path Trace message contains no records at the time it is initiated. The first member that receives it adds a
Root Path record, with itself as the sole listed member. Each member that subsequently receives the message appends
itself to the Root Path record. The Root Path Trace reply sent to the initiating member also contains the compiled
Root Path record.

In addition to adding itself to the Root Path record, each member also checks it to see if it is already listed. If it is,
it transmits a reply to the initiating member (and of course does not forward the query).

5.8 Error Message (8)

This message is used to convey notification of various kinds of errors. It only has the reply form (the message that
triggered the Error Message can be thought of as an implicit query). It is always sent datagram transmission mode.
A message must never be sent in response to an Error Message.

Members must wait some short period of time, on the order of one to a few seconds, before sending the same Error
Message to the same recipient.

The Message Subtype field indicates the type of Error Message. There is at this time only one type of error message.
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5.8.1 Type Unrecognized (1)

The Type Unrecognized Error Message is sent when a member does not recognize a given YTMP message or record
type, and the action for that message or record was either Ignore With Notification (1) or Drop With Notification (3).

The Message contains a single record, the Unrecognized Type Offset record, formatted as shown below:

1 2 3
12345678901234567890123456789012
+ —————t - - -——+ -—+
| 12 Record Length o1 2|
e oo - R +

| Unrecognized Type Offset 1
o —————— o

Unrecognized Type Offset 2 |
-— ———t +

R S —_

| Unrecognized Type Offset 3 Unrecognized Type Offset 4 |

+ ————t -—— - -+ -—+
| Offending Frame .....
o o +-—=/
O0ffending Frame
[-———- +o—— + -—+

The fields are defined as follows:

Fixed Part: The Record Type is 12, the Action is 2 (drop silently), and the Record Length is variable.

Unrecognized Type Offset: This is the offset, in units of 32-bit words, of the start of the unrecognized Message or
Records. The Oth word of the offset is the first word of this (the Unrecognized Type Offset) record. A value of
0 indicates an unused Unrecognized Type Offset field. The first Unrecognized Type Offset is always non-zero.

Up to four offsets can be included, allowing up to four unrecognized items. Multiple unrecognized records could
occur if, for instance, the Action of each record was Ignore With Notification.

Offending Frame: This is the frame that contained the unrecognized type, starting from the Frame Header. The
whole frame does not need to be included, but everything up to and including the entire last unrecognized record
must be included.

5.9 Root Announcement Message (9)

This message is used to discover tree partitions (multiple roots). It is sent by members that believe themselves to be
the root of the tree. A member will believe itself to be a root after it finds that all known members register it as their
root in their root paths (Section 8.6.2).

This message has both a query and reply form. The query form is used to by a root to announce itself to other
potential roots. It is sent unicast, datagram, to a rendezvous if the rendezvous is up. The rendezvous responds with
the reply form. Otherwise, the query form is sent broadcast, stream, to all members in the mesh. In this case, there
is no reply.

The Message Subtype for the query must take on one of two values:

Root (1): Set to 1 if the member sending the message considers itself to be the root.

Not Root (2): Set to 2 if the member sending the message no longer considers itself to be the root.

There are no message subtypes for the reply form (that is, it is sent as 0).

The reason for using a datagram reply as an acknowledgement rather than a stream is because a host may potentially be
a rendezvous for a very large number of group. One reason for this might be because the system where the Rendezvous
resides has high reliability and availability. Making this message datagram reduces the number of connections that
such a system would have to maintain.
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5.10 Pairwise Knowledge Message (10)

This message is used to create or destroy pairwise knowledge between two systems. It is used both by transit members
to maintain mesh neighbors (Section 10), and by rendezvous to maintain knowledge about members in the group
(Section 7.5). In the former case, the purpose is to insure a well-connected mesh topology (non-partitioned with
high probability). In the latter, to insure that the rendezvous know of at least one active group member with high
probability.

To create the pairwise knowledge, the query form of the message is sent mesh anycast, datagram. Its purpose is to
find a random other member. When done by a non-foot member, it is done frequently (once every few seconds) until
the member has a small set number of mesh neighbors (say, 3) that were discovered by its anycast transmission. After
this, it is done less frequently—once every few minutes or longer—just to keep the mesh topology well mixed.

Upon receipt of such a query, the recipient checks to see if the sender is already a tree or mesh neighbor. If it is not,
then the recipient establishes a connection back to the sender and replies. Subsequently, periodic low-level keep-alives
are used to maintain correctness of the pairwise knowledge.

To end the pairwise knowledge relationship, one or the other members/rendezvous transmits a reply message with a
subtype of destroy, and tears down the connection.

5.10.1 Message Subtype

The Message Subtype field must take one of three values:

Create Mesh (1): This indicates that the sending system is a transit member, and wishes to establish pairwise
knowledge for the purpose of forming a mesh link with the recipient.

Create Rendezvous (2) This indicates that the sending system is a rendezvous, and wishes to establish pairwise
knowledge for the rendezvous’s benefit.

Destroy (3): This indicates that the sending member has erased its pairwise knowledge with the recipient. This is
only sent if the pairwise knowledge is erased prematurely (before the timeout defined by the Lifetime Record).
It is primarily used for the case where the member leaves the group. It is never sent by a rendezvous.

5.10.2 Lifetime Record (15)

The Lifetime Record gives the time, in seconds, that the system transmitting the record will remember the system
receiving the record. This record is sent in both the query and reply messages. The actual time that both systems
use is the minimum of the two times. (The replying member obviously has no reason to choose a time greater than
that of the querying system.)

It is formatted as shown below:

1 2 3
12345678901234567890123456789012
+-——= + —4————— + -—+

15 | 2 | o1 3|
+ t-———= + -—+

—_ 4+ —

Time (seconds) |

+
1

+
|
|
+

+
+

The fields are defined as follows:

Fixed Part: The Record Type is 15, the Action is 3 (drop with notification), and the Record Length is 2.

Time: This is the maximum number of seconds that the sending system will remember the receiving member.
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5.10.3 Head Record (24)

This record is included in any Pairwise Knowledge Message with Subtype Create Mesh that is transmitted by a
member that is attached to a cluster. It contains the name of the current head.

When a cluster member receives a Pairwise Knowledge Message with this record attached, it compares the name with
that of its own head, and ignores the message if they match.

The format of this record is identical to that of the Member ID Record, with the exception that the Record Type is
24.

5.11 Member Down Message (11)

This message is used to indicate that a member has been discovered to be down. The discovery will normally have
been made on the occasion of a parent member trying to send an application frame to its child, over a stream, and
not receiving any packets in acknowledgement. The message is broadcast over the mesh, and lets the children of the
child know that their parent is possibly down.

This message has only the reply form.
5.11.1 Member ID Record (16)

This record must be attached to the message. It contains the ID of the member that is down. It is formatted as shown
below:

1 2 3
12345678901234567890123456789012
+ + O + —4
| 16 | Record Length |01 21
- + ————— + —4
| UDP Port Number | TCP Port Number |
- + ————— + —-—4

| IDP Port Number |

+ + + + -—+

| Name Length | Member Name ....
+———= + - +———=/
| Zero Padding
/ + + -—+

The fields are defined as follows:

Fixed Part: The Record Type is 16, the Action is 2 (drop silently), and the Record Length is variable.
UDP Port Number The UDP port number used by the member to receive datagram frames for this group.

TCP Port Number The TCP port number used by the member for transmitting stream frames for this group. This
field must be set to 0 if the member prefers using yTCP over TCP.

IDP Port Number: This is the IDP port number over which the listed neighbor will accept frames. This IDP Port
Number is learned from the Listen IDP Port of the IDP header.

Name Length: The length, in bytes, of the Member Name (not including padding).

Member Name: The DNS name of the member. It is padded out, if necessary, to an integral 32-bit boundary by
Z€ros.
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5.12 Extend Reservation Message (12)

This message is used by the querying member to extend the reservation being held for it at the queried member. The
reservation is extended to last for 2 minutes from the time that the queried member replies. Only the member for
which the reservation is being held may request an extension.

This message contains no records. The Message Subtype of the query must be set to 0. The Message Subtype of the
reply is set as follows:

Extension Accepted (1): The extension is accepted.

Extension Rejected (2): The extension is rejected.

The message may be sent over a stream or datagram.

5.13 Cluster Announce Message (13)

This message is used by members to announce themselves over their local cluster, for the purpose of auto-configuring
the member cluster. It is transmitted over the cluster IP-multicast group, with a time-to-live of 1 in the case of
dynamically-configured clusters, and with a time-to-live of 1 or more in the case of statically-configured clusters.

This message is periodically transmitted by the head. It is also periodically transmitted by certain feet. The message
has only the reply form.

This message is always transmitted datagram, using the underlying connectionless multicast protocol. Typically that
will be IPv4, but may be another protocol where IPv4 is not used. (Note that this is the only message that deals
directly with IP-level information. Everything else simply runs over TCP or UDP, and is silent about what internet
protocol may or may not be in use.)

The time-to-live used in the IP header of the transmitted message is 1 unless a different value has been advertised by
the head (in the IP TTL field of the Cluster Announce Record).

5.13.1 Cluster Announce Record (19)

The Cluster Announce Message contains a single record, the Cluster Announce Record. It contains various information
about the announcing member. It is formatted as shown below:

1 2 3
12345678901234567890123456789012
+ _— —_— O -— —4
| 19 | Record Length | 0] 2|
+ _— —_— R -— —+
| Flags | Raw Neighbor Capacity |
e O R e +
|

I

| IDP Port Number |
+ —— —-— = —-——+ —-—+
| Member Age (minutes) | IP TTL |  MTP Type |
o o o e +
| Number MTPs | MTP 1 | MTP 2

Fom e o to—m /

MTP N-1 I MTP N [

The fields are defined as follows:

Fixed Part: The Record Type is 19, the Action is 2 (drop silently), and the Record Length is variable.
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Flags: The following flag bits are defined:

Election State (1): Set to 1 if the cluster is currently electing a head. Set to 0 if the head is considered to be
already elected.

Member Status (2): Set to 1 if the member considers itself to be the head. Set to 0 otherwise.

Head Status (3): Set to 1 if the member considers itself to be an administratively assigned head. Set to 0
otherwise.

Anticipated Quit Status (4): This is set to 1 if the member has been a member of the cluster, and is planning
to quit it.
Quit Status (5): This is set to 1 if the member has been a member of the cluster, and is now quitting it.

One-way Media (6): Set to 1 if feet must not or cannot transmit frames over the shared media. Set to 0
otherwise.

Bits 7 - 16: Reserved. Transmit as zero, ignore upon receipt.

Raw Neighbor Capacity: This is the total combined raw capacity for both Stub and Transit neighbors. By raw,
we mean the sum of both used and available capacity. This is used as the primary criteria in electing a head.

UDP Port Number: The UDP port number used by the member to receive (unicast) datagram frames for this
group.

TCP Port Number: The TCP port number used by the member for transmitting (unicast) stream frames for this
group. This field must be set to 0 if the member prefers using yTCP over TCP.

IDP Port Number: This is the IDP port number over which the listed neighbor will accept frames. This IDP Port
Number is learned from the Listen IDP Port of the IDP header.

Member Age: This is the number of minutes that the member has been a group member. When the value reaches
all-ones (representing an age of roughly 45 days), it remains at that value there-after.

IP TTL: This is the value that was used in the time-to-live field of the IP header of the transmitted frame. In the
case of static clusters, this value is established by the head and used by the feet.

MTP Type: The multicast transport protocol in use for the purpose of transmitting application frames. This field
is valid only when transmitted by the cluster head. The values for this field are identical to those used by the
YIDP Protocol field.

Number MTPs: The number of available multicast transport protocols listed. These are the multicast protocols
that the member transmitting the message can use. The values are those listed under MTP Type below.

MTP X: The list of multicast transport protocols.

5.13.2 Head Parent Record (24)

This record is attached by a head that itself has a parent. It contains the name of its parent. This informs feet of the
parent, so that they can attempt to join the same parent if they later are elected head. It is formatted identically to
the Member ID Record, with the exception that it has a Record Type of 24.

5.13.3 Cluster Pairwise Knowledge Records (22, 23)

The head attaches a list of the pairwise knowledge maintained by members in the cluster (see Section 10.2). Each
entry is represented by three distinct records, in the following order:

1. The cluster-member end of the pair.
2. The remote (non-cluster) member end of the pair.

3. The remaining lifetime of the pairwise knowledge.

The first two records are encoded using the same syntax as the Member ID Record. They have Record Types of 22
and 23 respectively. The third record is the Lifetime Record (15).



5.14 Summary of Records

The Record Type values are summarized in the following table:

Record

Value

Corresponding Message

Get Member Information Query

Get Member Information (query)

New Neighbor Capacity 2 Get Member Information (reply)
Transit Neighbor List 3 Get Member Information (reply)
Stub Neighbor List 4 Get Member Information (reply)
Root Path 5 various

Join Query 6 Join (query)

Error String Record 7 various

Join Path 8 Intent to Join (query)

Group Information 10 Get Member Information (reply)
Statistics 11 Get Member Information (reply)
Unrecognized Type Offset 12 Error (reply)

RTT Change 14 Switch (query or reply)

Lifetime 15 Pairwise Knowledge (query and reply)
Member ID 16 Member Down (reply)

Child New Transit Neighbor Capacity 17 Get Member Information (reply)
Child New Stub Neighbor Capacity 18 Get Member Information (reply)
Cluster Announce 19 Cluster Announce (reply)
Reservation 20 Join (query), Quit (reply)

Join Target 21 Switch (query)

Cluster Pairwise Knowledge (cluster end) 22 Cluster Announce (reply)
Cluster Pairwise Knowledge (remote end) 23 Cluster Announce (reply)

Head 24 Pairwise Knowledge (query and reply)
Replacement 25 Join (query)

Replacement Authorization 26 Quit (query)

6 Major Member States
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Figure 6 shows the major member states. A member can act in concurrent multiple capacities, and Figure 6 shows
which states a member can be in at any given time. Figure 7 shows the transitions between the major states.

States exist either in the context of the tree and its algorithms, or the context of a cluster and its algorithms. The
two algorithm operate independently, with the sole exception that, if a member is a (cluster) foot, then it does not
participate in the tree algorithms at all.

There are three transient states:
Newcomer: This is the initial state of a member joining the group. The member is only in this state once.

Orphan: This is the transient tree state. This is the state of a member when it does not have a parent, but neither
does it consider itself to be the root of the tree. While in this state, the member is actively searching for a
parent.

Candidate: This is the transient cluster state. This is the state of a member when it knows of no cluster head, and
is participating in the election of a new head.

There are six steady states:

Root: This is a steady tree state. A member considers itself to be the root when it has exhausted its search to find
a parent. In this state, it periodically searches for another root (in case the tree is partitioned).

Child: This is a steady tree state. A member is a child when it has a parent. A member cannot be a child and a
root.
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Figure 7: Transitions Between Major Member States

Parent: A member is a parent when it has a child. Note that only a member designated as a transit member can be
a parent.

Clusterless: This is a steady cluster state, of sorts. If a member is unable to find any other cluster members, then
it considers itself to be clusterless. All it does in this state is listen to the cluster, and periodically transmit to
it in search of another cluster member. It also participates in the tree algorithms. The other two cluster steady
states exist only when there are two or more members active in the cluster.

Head: This is a steady cluster state. A member is a cluster head when it has won an election. As a cluster head, it is
responsible for insuring that the cluster is attached to the tree, and therefore participates in the tree algorithms.

Foot: This is a steady cluster state. A member is a cluster foot when it has not won an election, and another member
has. A foot does not participate in the tree algorithms, because the cluster head does this on its behalf.
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7 Rendezvous Algorithms

The first thing required to create a group is that one or more rendezvous be invoked. Rendezvous are the first point of
contact for newly joining members (newcomers). A rendezvous is invoked by the group’s controller application, using
the createGroup API call.

The rendezvous must reside on a host with a DNS name matching that of the Group ID’s group name. If there are
multiple rendezvous, each of their hosts must have the same DNS name. In addition, the DNS reply for the name
must include A Records for all of the hosts. Among other things, this allows the rendezvous to find each other.

The rendezvous must communicate knowledge of newcomers to each other, so that all rendezvous can monitor the
group membership. They do this through a separate group, called the rendezvous group, whose members consist only
of the rendezvous. By convention, the group name and port number of the rendezvous group are the same as the group
being managed (sporadically called the main group where a distinction is necessary). The subname of the rendezvous
group is the concatenation of the main group’s subname with the string “.rendezvous”.

For example, if the Group ID for the main group is:
foo.bar.com/yoidChat/7654

then the Group ID for the rendezvous group is:
foo.bar.com/yoidChat.rendezvous/7654

Each rendezvous keeps a database of (main) group members, called the member list. The member list need not contain
all group members, but should contain enough that the rendezvous will know of several alive members at any given
time with extremely high probability. If the member list contains no valid members, then newcomers effectively cannot
join the group (or, more to the point, a new tree, partitioned from the existing tree, would be created). Probably a
rendezvous should maintain knowledge of roughly 10 members at any given time.

A rendezvous may receive the following YTMP messages:

Message (Type) Delivery From Purpose
1  Get Member Information (Query) Unicast Newcomer  Member discovery for group join
2  Pairwise Knowledge (Reply) Unicast Member Maintain knowledge of members
3 Root Announcement (Reply) Unicast Member Tree Partition Detection
4  Get Member Information (Reply) Multicast Rendezvous Inform Rendezvous of members
5 Root Announcement (Reply) Multicast Rendezvous Tree Partition Detection

These are discussed in the following sections.

7.1 Newcomer Query

The first thing a newcomer does is to send a Get Member Information Query to a rendezvous in order to learn about
one or more members. The Request Mask of the query has the Transit Neighbor List and Group Information bits set.
This message is received by the rendezvous via a stream.

Upon receiving this message, the rendezvous stores the newcomer in its member list. This will typically require deleting
the oldest entry in the list to make room for the new one, though the exact management of the list is purely a local
matter. Next, the rendezvous must both reply to the newcomer and inform other rendezvous of the newcomer. The
sequence with which it does this may vary depending on the situation.

If the rendezvous’ member list is empty when it receives the message, then it immediately multicasts a Get Member
Information Reply to other rendezvous over the rendezvous group, with the newcomer as the sole entry in the Transit
Neighbor List. The rendezvous then waits for a short time (several seconds at least) before replying to the newcomer.

The reason for this wait is to avoid the situation where two different newcomers query two different rendezvous at
the same time. If both rendezvous have empty member lists, and both rendezvous reply as such to the newcomers,
then the newcomers will not find out about each other, and the tree will start off partitioned. Waiting gives each
rendezvous a chance to hear of simultaneous newcomers from other rendezvous.
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If the rendezvous’ member list is not empty when it receives the query, then it immediately replies to the newcomer.
The reply consists of a Transit Neighbor List containing selected members from the member list. The main criteria
for selecting the members are similarity of DNS name between the member and the newcomer, and distance between
the newcomer and the member (if this is known). These things being equal, the members may be selected randomly,
or, if the list is not large, all of the entries can be included.

If the member list is empty, even after waiting to hear from other rendezvous, then the Transit Neighbor List in the
reply is empty.

7.2 Destroy Pairwise Knowledge Reply from Member

This message is sent to the rendezvous when a transit member, with which it has pairwise knowledge, has quit the
group. After deleting the corresponding member from its member list, the rendezvous may send a Pairwise Knowledge
query to find a new member according to the algorithm of Section 10.

7.3 Root Announce

This message is periodically sent by the root of the tree for the purpose of detecting a tree partition. Any member
that considers itself to be the root periodically sends this message to a rendezvous. When it is no longer the root, it
sends one or a few Root Announcement messages with Subtype Not Root.

The rendezvous maintains a list, called the root list, of roots (usually a list of one). When the rendezvous receives
a Root Announcement with a Message Subtype of Root, it adds that member to its root list. When the rendezvous
receives a Root Announcement with a Message Subtype of Not Root, it deletes that member from its root list.

Every Root Announcement message received from a member (not a rendezvous) is forwarded to the other rendezvous,
multicast, over the rendezvous group.

Every received Root Announcement message (whether from a rendezvous or a member) is also forwarded to all other
members in the root list.

7.4 Get Member Information Reply from Rendezvous

This message informs other rendezvous of newcomers, and is discussed in Section 7.1. It is sent as an unsolicited
reply. When receiving this message, the rendezvous may add the listed member to its member list if appropriate (for
instance, because the list is not full).

7.5 Member Discovery

The member list maintained by each rendezvous should be large enough that at least one of them is still current with
very high probability, but not so many that the overhead of keeping them up to date is excessive. 10 entries or so seems
appropriate. Note that, in particular, if all of the members in the rendezvous’ member list and root list are no longer
current, the rendezvous cannot successfully refer newcomers to group members until it receives a Root Announcement
from the current root.

If the rendezvous’ controller application is also a normal application (that is, has joined the tree proper), then the
rendezvous need do nothing special to maintain its member list. The rendezvous, as a regular member, will naturally
know of enough other members.

If the rendezvous’ controller application is not a normal application, then the rendezvous may either choose to become
a member, or may send Pairwise Knowledge queries into the mesh more-or-less as described in Section 10. It would
choose the former where the amount of traffic over the group is similar to or less than that required to do the queries.
The rendezvous can either first become a member and change strategies if the traffic is too high, or first not become a
member, and use information in the Statistics record of Get Member Information Messages to determine if it should
become a member.

For phase 1 of implementation, which does not have mesh anycast, the rendezvous should simply periodically find other
members in the group in the same way that member members periodically find parent-side members (Section 8.7),
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with the exception that the rendezvous should transmit the anycast Get Information Query messages to randomly
selected members (rather than just the parent member).

8 Tree Maintenance Algorithms

In the algorithms described in this section, unless otherwise stated, the descriptions are refering to members acting
outside the context of a cluster. This includes either transit members that have been elected as the head of a cluster,
and members not on a cluster at all. The subsequent section (9) describes cluster operation.

8.1 Obtaining and Changing Parents

Every member considers every other known member to be one of the following:

1. A parent.

[\S]

. A prospective parent.
. A relative.

3
4. A potential parent.

Ut

. Not a potential parent.

A member considers another member to be its parent if it has either completed a join or become a foot, and it believes
its parent to be still up and a member of the group, for instance because it has recently received frames from the
parent.

A member considers another member to be its prospective parent if it is actively seeking to join that member. A foot
never tries to seek a new parent (though it may of course become the head and then try to find a parent). Otherwise,
a member will only seek to join the new parent if:

1. it believes that the new parent’s root path does not contain itself, and

2. it believes that the new parent has new neighbor capacity.

These two criteria are called the parent validity criteria.

A member considers another member to be its relative if the parent validity criteria hold, and the relative has agreed
to immediately inform the member of any changes in its root path or new neighbor capacity. This allows the member
to select a relative as a prospective parent without having to first sending it a Get Member Information query to
determine the information. A member will typically try to maintain two relatives. Two members can be relatives for
each other.

A member considers another member to be a potential parent if, as far as it knows, the parent validity criteria hold.
The potential parent, however, will not inform the member of any changes to its root path or new neighbor capacity,
so the information may be out of date. Because of this, a member must send a Get Member Information query to a
potential parent to update the parent validity criteria before making it a prospective parent.

Finally, a member considers another member to be not a potential parent if, as far as it knows, the parent validity
criteria do not hold.

If a member has a parent and a prospective parent, then the sequence of events for the member are as follows:
1. Join the prospective parent.
2. Stop exchanging frames with the parent and start exchanging frames with the prospective parent.

3. Quit the (former) parent.
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At the moment of the second step, the prospective parent becomes the parent, and the member no longer has a
prospective parent.

Note that there is a period of time when two (or more) members believe themselves to be the parent of a given (child)
member. As long as the child, at any given point in time, only considers one of the members to be its parent, and
therefore only transmits and accepts application frames to and from that parent, no loops in the tree will form. Frames
sent from the non-parent to the child will simply be dropped. (The child should not send an YTMP Error message
for these frames unless it believes that the non-parent should know that it is no longer a child — for instance because
it has already quit the parent.)

Note also that, even in the case of stream frame transmission, frames may be dropped or duplicated as a result of
the switch. This is because the frames being sent by the two parents will not in general be synchronized in time.
Normally, however, YDP is able to prevent lost or duplicated frames based on the byte sequence numbering.

There are three conditions under which a member may join a parent:

Independent: This is the case either where the member has no children, or where the only “child” is the feet for
which it is the parent. This is the simplest case, because any transit member in the tree is a valid potential
parent. This case occurs whenever a member is joining a group for the first time. It is also always the case for
stub members.

Dependent Coordinated: The member has children and a current parent as it obtains a new (prospective) parent.
In this case, the member can coordinate the change by sending an Intent to Join message to the prospective
parent through its current parent, and by freezing Intent to Join messages coming from the parent. This would
be the case where, for instance, the member found a potential parent that was closer than its current parent. It
also occurs when a member receives an Anticipated Quit message from its parent.

Dependent Emergency: The member has children but no current parent. In this case, the member cannot coor-
dinate the parent change using the Intent to Join message. It does, however, check for a partition by initiating
a Root Path Trace message from the prospective parent. This case occurs when the (now former) parent of a
member has crashed and it is detected by the member. It also occurs when a member receives a Completed Quit
message from its parent before it has had a chance to obtain a new parent coordinated.

In the following sections, for each of the above three cases, the algorithm for how a member obtains the parent is
given.

8.1.1 Independent Parent Change

In this case, the member simply transmits a Join query to the prospective parent as described in Section 5.3. Upon
success, it transmits a Completed Quit Message to its old parent.

8.1.2 Dependent Coordinated Parent Change

There are two cases where a dependent coordinated parent change may take place. In the first, a member receives an
Anticipated Quit Message from its parent. In the second, a member independently decides to select a new parent.

In the first case, upon receiving the Quit, the member should wait for a short, randomly selected period of time,
between zero and ten or so seconds, before doing anything. This is because the member’s siblings will presumably
also be changing parents. Skewing the times at which each sibling changes parents smooths out the resulting activity
a bit.

Except for this random wait, the procedure for obtaining the new parent are the same for either case. The basic steps
are:

1. Using the Get Member Information query/reply, verify that the prospective parent is valid (parent-side), and
optionally verify that it has capacity.

2. Freeze reception of Intent to Join messages from the (current) parent.

3. Send an Intent to Join message to the prospective parent via the path through the (current) parent.
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Receive a positive reply for the Intent to Join directly from the prospective parent.
Send a Join directly to the prospective parent.

Receive a positive reply for the Join. Save the new parent and root path information.
Move traffic flow from the (now former) parent to the prospective (now current) parent.

Send a Completed Quit Message to the former parent.

© ® N o o e

Send an uninitiated Get Member Information reply to any children informing them of the new root path.

10. Transmit all reverse-path enabled Source Codes for sources on the child-side to the new parent.

The steps are described in more detail here:

Unless the member has very recently received a Get Member Information reply from its prospective parent, it should
send a Get Member Information query requesting the prospective parent’s neighbor capacity and root path. In
particular, if the member was forced to abort and restart its attempt to obtain the prospective parent (for instance,
because of a negative reply from the Intent to Join), it must get a new Get Member Information reply from the
prospective parent. If the reply indicates that capacity exists, and that the root path does not contain the member,
then the member can proceed.

Next, the member freezes Intent to Join messages coming from the parent. This means that any Intent to Join received
from the parent are not passed on, and a negative reply to the Intent to Join is sent to its source.

Next, the member transmits an Intent to Join to its parent. The path in the Join Path Record consists of the
concatenation of the member’s root path and the prospective parent’s root path, minus redundant hops. For instance,
assume that the member’s root path is N-A-B-D-R, where N is the member, A is N’s parent, and R is the root. Assume
that the prospective parent’s root path (as learned from the Get Member Information reply) is P-C-B-D-R. Then, the
join path is N-A-B-C-P. Member D and the root R are deleted from the concatenation because they are redundant.

If a negative reply is received from any recipient of the Intent to Join, the member must temporarily abort the
procedure. Also, if no reply is received after a suitable time (1/2 minute or so is probably plenty), the member also
aborts the procedure. To do this, it first unfreezes the Intent to Join block from its parent (i.e., it again allows Intent
to Join messages from its parent). It sets a random timer, probably ranging up to 1/2 minute or so for quit-induced
parent changes, longer for independent parent changes.

After the timer expires, it may again attempt to obtain the prospective parent, starting with the Get Member
Information message.

If the Intent to Join is accepted, the prospective parent opens a stream with the member to send the Intent to Join
reply. Future messages exchanged with the prospective parent take place over this stream.

At this point in time, the member may safely join the prospective parent. This is true even if the parent is now found
to be unreachable, or if a Completed Quit is received from the parent. In other words, after this point in the process,
there is no need to use the Dependent Emergency procedure even if the parent is lost. This is because there is no
longer any need to send messages through the parent, and because the loop-free-ness of the prospective parent has by
now been established.

The member then sends a Join query to the prospective parent. The Join Type of the query must be Coordinated.

If the Join reply is positive, then the member modifies its state to indicate the new parent, and changes its own root
path to that of the parent plus itself. If the Join reply is negative, then the member aborts the attempt as described
above with the Intent to Join message failure. The member should also probably pick a new prospective parent, or,
if the change was not quit-induced, stop trying to change parents altogether.

After switching parents, the member should change traffic flow from the old parent to the new parent. This means
that multicast or anycast frames received from a child should now go to the new parent and not the old one. Frames
received from the new parent should be forwarded as normal. Frames received from the old parent should be silently
discarded.

Next, the member sends a Completed Quit Message to the former parent. This is sent over the still-established stream.
After this, the member has no neighbor relationship with the former parent, and should tear-down the connection
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with it. Tree-bound application frames received from the former parent after this should trigger an Invalid Neighbor
Error Message.

Simultaneous with this, the member must inform its children of its new root path. This is done by sending an
uninitiated Get Member Information reply to each transit child over the established stream. The Get Member
Information reply contains the Root Path record. Each child must set its new root path, and likewise inform their
transit children of the new root path, and so on.

Finally, also simultaneous with this, the member must inform its new parent of the reverse-path enabled Source Codes
for members reachable via its children. To do this, it uses an unsolicited Get Member Information reply with Header
Option Records containing Source Code header options.

Note that the member must also, over time, convey the non-reverse-path enabled Source Codes to its new parent.
However, these can be conveyed at the time application frames from those sources are received and transmitted by
attaching the Source Code Option in the usual way.

If at any time before receiving the positive Join reply from the prospective parent, the member receives a Root Path
Trace with a Subtype of Parent/Prospective Parent, the member should abort the procedure, and restart after a
random time delay, as described above. This essentially gives priority to the member that initiated the Root Path
Trace to complete its parent acquisition. The Root Path Trace of course should be forwarded to the parent as normal.

8.1.3 Dependent Emergency Parent Change

This procedure is used by a member to obtain a new parent in the case where the member has no current parent
through which to transmit an Intent to Join. This can occur either because the parent is unreachable (i.e. no TCP
connection can be established), or because a Completed Quit has been received from the parent.

The basic procedure in this case is:

1. Using the Get Member Information query/reply, verify that the prospective parent is valid (parent-side), and
has capacity.

Initiate a Root Path Trace message from the prospective parent.

Receive a no-loop indication from the Root Path Trace reply.

Send a join directly to the prospective parent.

Receive a positive reply for the Join. Save new parent and root path information.
Initiate traffic flow with the new parent.

Send an uninitiated Get Member Information reply to any children informing them of the new root path.
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Transmit all reverse-path enabled Source Codes for sources on the child-side to the new parent.

The basic difference between the dependent emergency and dependent coordinated cases are that the emergency case
uses a Root Path Trace to check for loops, while the coordinated case uses an Intent to Join. The Root Path Trace
method is in a way more intuitive than the Intent to Join method, and could in fact work with the coordinated case,
but it places a heavy load on the root and members near the root.

The Intent to Join, on the other hand, cannot easily be used in the emergency case because there is no parent to send
the message to. In theory, we could try sending it instead to the parent’s parent (and to the next one in the path if
that member is unavailable), but this approach gets almost arbitrarily complex.

Therefore, we use the two different approaches for the two different cases. In what follows, we only discuss the
differences between the two approaches. The common steps should be executed as described for the dependent
coordinated case above.

The joining member may choose to try to join the potential parent even if it advertises no new neighbor capacity. This
is because it may take some time to find a potential parent with new neighbor capacity, during which the member will
not be on the tree. By using the Emergency Join Type of the Join query, the joining member can force the prospective
parent to accept the Join even if it has no neighbor capacity.
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The Root Path Trace sent to the prospective parent must have a Message Subtype of Parent/Prospective Parent. If
the Root Path Trace indicates a loop, the member should temporarily abort the procedure, and retry after a small
random time period (approximately 1/2 minute). A common source of loops is expected to be the case where multiple
children of the former parent are trying to join new parents at the same time, and these joins taken together form a
loop. This is why the Root Path Trace includes prospective parents—it detects potential future loops.

If the Root Path Trace succeeds (shows no loop), the member sends a Join query to the prospective parent. The Join
Type is Emergency. From here, the member proceeds as described for the dependent coordinated case above.

Note that, if a member receives a Parent/Prospective Parent Root Path Trace during this procedure, it forwards it to
its prospective parent, but otherwise continues the procedure as normal.

8.2 Neighbor Capacity Search

There are two general circumstances in which a member is searching for a new parent. One is the background
activity done by a member that already has a parent and a couple relatives, and is simply looking for better ones (see
Section 8.7). The other, covered in this section, is where a member either has no parent, or has a parent but does not
have enough relatives.

In this latter case, it is important to find a parent/relative as soon as possible. (To simplify the remaining, we refer
only to searching for a parent, with the tacit understanding that this includes the case of looking for a relative.) The
appropriateness of the parent (for instance, how close it is) is less important. In certain scenarios, however, finding a
parent with any new neighbor capacity at all may be difficult. An example might be an audio-video conference among
members that are constrained in their processing ability or output bandwidth. In this scenario, most members may
already be at capacity, and cannot accept any new neighbors without degrading performance for existing neighbors
below acceptable levels.

To cope with this scenario, child members provide information to their parents as to whether they or one of their
offspring have new neighbor capacity (using the T and S bits of the New Neighbor Capacity Record). This allows
the searching member to quickly, through a series of Get Information Queries down the tree, find a member with new
neighbor capacity, if there is one.

Even if there is no member with new neighbor capacity, the searching member may still be able to join if it itself has
new neighbor capacity (Figure 8).

The algorithm for searching out new neighbor capacity is straight-forward. At the start, the searching member will
generally have at least one entry in the parent-side member list, and therefore will know of at least one potential
parent. In the case of a newcomer, this is known from the Get Member Information query made to a Rendezvous. In
the case of a previously-attached member, this is known through its normal tree probing activities (Section 8.7). In
the case where the parent-side member list is empty, the member must become a root (Section 8.6.1).

In any event, we assume here that the parent-side member list is not empty. The searching member sends a Get
Member Information query to one of these members, in search of a prospective parent. The member selected should
be the one most likely to have New Neighbor Capacity or Child New Transit or Stub Neighbor Capacity. This might
be, for instance, the member that has most recently reported such capacity. Several members can be queried at once,
to more quickly find a member with capacity (at the expense of sending “unnecessary” queries).

The Get Member Information query requests the potential parent’s Root Path, New Neighbor Capacity, and Child
New Transit Neighbor Capacity or Child New Stub Neighbor Capacity, depending on whether the member is a transit
or stub.

The purpose of the Transit Neighbor List is simply to learn of additional potential parents to be added to the list.

If the Root Path contains the searching member, then it is no longer parent-side, and must be deleted from the list of
potential parents. Otherwise, the members in the root path are added to the list of potential parents, if they are not
there already.

If the queried member has new neighbor capacity, it is made a prospective parent, and joined as described in Sec-
tion 8.1.3. If it does not have new neighbor capacity, but lists one or more children in its Child New Transit/Stub
Neighbor Capacity record, then these members are added to the list of potential parents, and one of them is queried.

As long as queried members reply that they themselves have no new neighbor capacity, but one of their offspring
does, the search continues depth-first. That is, the searching member queries members deeper in the tree (towards
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the leaves) before querying other members.

At some point, the searching member may have exhausted all known potential parents (that is, queried them all and
found none with either new neighbor capacity or offspring with reported new neighbor capacity), including potential
parents added to the list from the learned root paths.

At this point, if the searching member itself has new neighbor capacity, then it can join the tree by inserting itself
between an existing pair of neighbors. For this, it selects the closest known potential parent, and makes an emergency
switch with one of the potential parent’s children (Section 8.4). (Note that there is some risk in making this switch.
It is possible that internet path between the searching member and its new parent or its new child is of unacceptable
quality, thus making the overall situation worse.)

If the searching member itself has no new neighbor capacity, and has no children of its own, then the searching member
cannot (re)join the tree. It should wait some period of time and try again. If the searching member itself has no new
neighbor capacity, but it does have children of its own, then it must send quit messages to its children. This will cause
them to try to join the tree themselves. It may also make any new neighbor capacity available among the searching
member’s offspring available for the searching member at a later time.

Note that the member should only quit its children if it knows itself not to be the root of the tree. It will know this
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because it knows of potential parents (members that are up and do not list it in their root paths). If the member
knows of no potential parents, and therefore thinks that it may be the root of the tree, then of course it should not
quit its children.

8.3 Relatives

A relative of a member A is another member that agrees to inform member A immediately should either its root path
or its new neighbor capacity change. This allows member A to know at any instant in time, with high probability, if
the relative can validly become a potential parent.

Relative is not a bi-directional relationship. The fact that member B is a relative of member A does not mean that
member A is a relative of member B. (In this sense, relative is a poor choice of term, because when applied to humans
it is bi-directional, however much we may sometimes wish that were not the case.) Two members can, however, both
be relatives of the other.

Two members that have a relative relationship in either or both directions maintain a connection, which means that
they ping each other periodically to insure the other is still up.

Once a member A decides that another member B should be a relative, member A established a connection with
member B, and sends it a(nother) Get Member Information query, but this time with the Receiver Relationship field
set to "Relative”. If member B agrees be member A’s relative, it keeps the connection up, and sends a reply. The
Receiver Relationship field of the reply is set to ”None”. Otherwise, member B tears down the connection.

(I think, by the way, that this is an ugly mechanism, and should be changed to an explicit relative request query/reply.
Currently, however, this is how the code works.)

If member B in turns wants to make member A a relative, it does the same thing, except over the existing connection.

8.4 Member Switch

If a tree is running at or nearly at capacity, then in order for members to find better parents, or indeed to find any
parents at all, they may have to arrange a switch with another member. This section describes the algorithm for
switching.

There are three cases of interest:

e Emergency Switch,
e Coordinated 2-way Switch,

e Coordinated 3-way Switch.

8.4.1 Emergency Switch

Like the emergency join, the emergency switch happens when the switching member has no parent. The switching
member will also have already made an exhaustive attempt to find a member with new neighbor capacity before
attempting the emergency switch (as described in Section 8.2). Finally, the switching member must itself have new
neighbor capacity to offer to the switched member.

The emergency switch is illustrated in Figure 9. Here, Member x is the switching member, Member y is the switched
member, and Member ¢ is the parent of Member y. (In this figure, as well as in Figure 10, the higher neighbor is the
parent of the lower neighbor.)

Member x first does an Emergency Join with Member c. Member c¢ is generally forced to accept such a join, and
assumes that Member x will try to find a new parent, or arrange the appropriate switch, as soon as possible. After
joining Member ¢, Member x immediately requests an Emergency Switch of Member y. The Switch message sets
the Coordinated bit in the Message Subtype to 0 (emergency), the Preliminary bit to 0 (not preliminary), and the
Reservation bit is 0. There is no RTT Change Record attached to the query. Member c attaches a Join Target Record
with itself inside.

Upon receiving this query, Member y must join Member and x and quit Member ¢ using a coordinated join procedure.
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8.4.2 Coordinated Switches

A coordinated switch is made when the switching member has a current parent, and wants to join a better one. There
are two types of coordinated switches, the 2-way switch and the 3-way switch. The 2-way switch is made when the
switching member has new neighbor capacity, and a 3-way is made when it doesn’t.

The 3-way switch is in fact two consecutive switches, the first providing the switching member with new neighbor
capacity, and the second allowing the switching member to make the desired switch. A 2-way switch is nothing more
than the second switch of the 3-way (see Figure 10). For that reason, we start with a description of the 3-way switch,
following that with the part common to both types of switches.

The goal of the first half of the 3-way switch is for the switching member (Member x) to obtain new neighbor capacity
for itself, which it can subsequently offer to the ultimate member it wants to switch with (Member y). It does this
by shedding one of its own children (Member d). Assuming that Member x has multiple children, it must determine
which to shed. It does this by ranking them in order of closest (smallest latency) to furthest, and trying to switch
with them in that order.

Although Member d may have multiple potential parents of its own, Member x must offer its own parent (Member a)
to Member d as a potential parent. If Member a has no new neighbor capacity, then Member x must find some other
member that does (Member b) before it can proceed. Member b does not need to be close to Member x, because it
will be used only as a temporary parent for the 3-way switch.

Assuming that Member x has found Member b, it then sends a Switch Message query to it’s child Member d. The
Subtype of the query is coordinated, preliminary, with no reservation required. The Join Target Record is attached,
and contains the parent, Member a. In addition, the RTT Change record is attached, and contains the benefit that
Member x expects to see after it has joined its desired potential parent Member c. In other words, it contains the
difference of the Member x/Member a RTT with the expected Member x/Member ¢ RTT.

When Member d receives this query, it must determine if the loss it will experience by joining Member a or some other
member (if any) is offset by the gain experienced by Member x. In deciding whether to allow the switch, Member d
should consider both the overall improvement to the topology (if any) and the negative impact it would experience
itself. How exactly to weigh these two is an issue for further study.

Member d determines the expected RTT with Member a by sending one or more Get Member Information messages
to Member a. It may also already know the RTT to other potential parents. It selects the potential parent with new
neighbor capacity (including Member a, which may not have new neighbor capacity) that has the lowest expected
RTT. If Member d determines that this new RTT is acceptable, it sends a Switch reply to Member x with a Subtype of
Preliminary Accept. It attaches an RTT Change Record indicating the benefit or loss that Member d will experience
by joining the selected potential parent.

If Member does not except the proposed switch, it send a Switch Reply with Subtype Reject.

Assuming that a Preliminary Accept was sent, Member x must now determine if any of the children of its desired
potential parent, Member ¢, will accept the switch.
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To learn this, Member x first requests a Transit Neighbor List from Member ¢ using the Get Member Information
message. The transit neighbor list in the reply contains the estimated distances to the children. The best likely
candidate for a switch is the one furthest from the potential parent. Taking the potential parent’s children in order of
furthest to closest, Member x sends Switch queries.

The Switch query, here sent to Member y, has a Subtype of coordinated, preliminary, with reservation required. The
Join Target Record is attached, and contains Member x itself. In addition, the RTT Change record is attached. This
time, however, it contains Member x’s expected benefit, minus the loss expected by its child Member d. Member y is
thus evaluating the overall benefit/loss of both of the switches.

Member y goes through the same process as described for Member d above, and replies with either a Preliminary
Accept or a Reject. The reply, however, does not contain an RTT Change Record. Assuming it is a Preliminary
Accept, Member x can now move forward with the first of the actual switches. Note that a Preliminary Accept does
not guarantee that the actual switch will in fact be accepted later on.

Assuming that Member x’s parent, Member a, does not itself have new neighbor capacity, Member x first does a
coordinated join to the temporary parent it has selected, Member b (Section 8.1.2). The Quit with Member a requests
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that it reserve the new neighbor capacity freed up by Member x for Member d.

After this, Member x sends a Switch query to Member d. This is identical to the previously send Switch query,
except that the Preliminary bit of the Subtype field is set to 0. Member d then attempts to do a coordinated join
with whatever potential parent it has selected. If it has selected Member a, however, and fails to make the join
within something under 2 minutes (for instance because the Intent to Join failed), it must send an Extend Reservation
Message to Member a.

Assuming that Member d successfully joins another member, it sends a Switch reply to Member x with Subtype
Accept. The RTT Change Record may have the same value as the previous Switch reply, or may be modified to reflect
any improvement in the estimate. Member d of course then also Quits Member x.

At this point, Member x now has new neighbor capacity, and can start the second half of the 3-way switch. Except
where mentioned otherwise, what follows from here is also the procedure for a 2-way coordinated switch. This is
shown in the lower half of Figure 10, with Member x as the switching member, and Member y as the switched
member. Member d no longer has a role in the process. For the 2-way coordinated switch, it is assumed that Member
x has already rank ordered the children of Member ¢ according to the RTT between Member ¢ and its children, and
has selected Member y as the switched.

Member x next sends a Switch query to Member y. It is the same as the Switch query sent from Member x to Member
y described above, except that it is not preliminary. The RTT Change is also calculated in the same way, though it
may have a different value from before based on new information.

Upon receiving the query, Member y tries to do a coordinated join with the prospective parent it has chosen (either
Member x itself or some other member). Assuming that it succeeds, when it Quits Member c, it reserves new neighbor
capacity for Member x. Member y then sends a Switch reply with Subtype Accept to Member x. The reply has no
attached record.

At this point, Member x does a coordinate Join to Member c. As with Member d’s coordinated Join described above,
Member x must send an Extend Reservation Message to Member c if it will not be able to accomplish the Join within
2 minutes.

Note that at any time in the process, an attempted Join may fail, or a member may decide after all that it cannot
accept a switch request. This means that part, but not all, of the switch will have occured. There are no specific
mechanisms for attempting to undue an aborted coordinated switch. Understanding that the overall topology may be
worse off than before the switch was attempted, we simply allow the usual mechanism of searching for better parents
to continue its course and hopefully improve things.

8.5 Join Group

To join an existing group, a newcomer must know the Group ID, including the Group Name, Group Subname, and
the Group Port. These are learned via some mechanism outside the scope of this specification.

A newcomer may choose to first determine if there is a local cluster to join, or first try to find any parent in the tree,
or do both simultaneously. Either way, the two activities are independent, except for the fact that, if the newcomer
finds a local cluster and it is not elected as head of that cluster, then it does not need to find another parent. The
remainder of this section assumes a member that is not a foot.

The first thing the newcomer does is transmit a Get Member Information Query to one of the rendezvous for the
group. The rendezvous is found by doing a DNS lookup on the Group Name. The Get Member Information Query is
sent unicast over a (TCP) stream, using the Group Port as the destination port number. The query requests a Transit
Neighbor List and Group Information, as described in Section 7.1.

A “Phase 0” implementation can simply join one of the listed members at this point, and skip the remaining.

Upon receiving the Get Member Information Reply from a rendezvous, the newcomer has a list of potential parents in
the tree. The goal of the newcomer is to find a parent as quickly as possible (versus finding the best possible parent).
It does this by following the algorithm of Section 8.2.

If the newcomer finds a potential parent with new neighbor capacity of the appropriate type (stub or transit), it
immediately transmits a Join Query to the member. This is sent over the same stream that was setup to transmit the
Get Member Information messages.
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The Member Type of the Join Query is set to that of the newcomer (stub or transit). The Join Type is set to
Coordinated. If the Join Reply is positive, then the newcomer appends the parent to the received root path to create
its own root path.

If the Join Reply is negative, or if for any other reason the join failed (the potential parent became unreachable
during the join process, the potential parent had no new neighbor capacity, etc.), the newcomer continues the search
as described in Section 8.2.

8.6 Root

A root member is defined as a member that does not have a parent, and has exhausted all reasonable possibility of
finding a parent. Many members will, for short periods of time, have no parent, for instance because their parents
crash. Such members are usually able to find new parents quickly. They are referred to as orphans. When a member
first loses its parent, it considers itself an orphan, and tries hard to find a new parent. If an orphan cannot find a
parent after a concerted attempt, it considers itself to be the root.

A root periodically searches for another root, but otherwise does not try to find a parent per se.

The following two sections describe the procedures taken by an orphan and a root.

8.6.1 Orphan

When a transit member first joins a tree (as a newcomer) it discovers one or more other members in the tree (if it is
not the first member to join). All of these members are initially parent-side members. Through the normal process
of searching for a better parent, each member potentially learns of other parent-side members. All of these members
are potential parents, and are kept in a list of parent-side members.

Starting with this list, the member searches for a potential parent that has new neighbor capacity, as described in
Section 8.2. If the search succeeds, and the member joins a parent, then it is no longer an orphan. If the search
ultimately fails, it is either because there is no spare capacity in the tree, or because the member is the root. The
former is the case if the member knows of parent-side members.

If the member does not know of any parent-side members (all known potential parents turned out to no longer be
parent-side members), then the member assumes that it is the root of the tree. It may in fact not be the true root of
the tree, because there may be parent-side members that it does not know about. It, however, has no way of knowing
this, and therefore must assume that it is a root.

8.6.2 Root

Once an orphan decides that it is a root, all it can do is periodically send Root Announcement Messages to a rendezvous,
if it is up, or broadcast them to the mesh otherwise (phase 4 only). On the assumption that other roots are doing the
same thing, they will find each other with high probability. The only time they won’t find each other is when both
1) the rendezvous are unreachable (or, different rendezvous are reachable only by different roots), and 2) the mesh is
partitioned.

If after a small number of periodic Root Announcement messages to the rendezvous the root receives no reply, it must
consider the rendezvous to be down. Thereafter, it periodically sends the Root Announcement message to both the
rendezvous and the mesh. Any time it is receiving replies from the rendezvous, it may stop sending to the mesh. The
periods for the two Root Announcement messages, as well as the number of attempts before which the root starts
sending to the mesh, are issues for study.

At any time the root may learn of a potential parent, either from a Root Announcement message, or some other
message such as a Get Member Information message. When this happens, the root again considers itself to be an
orphan, and operates as described in the previous section (8.6.1).
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8.7 Background Parent Search

If a member is not a root, then it is a child of some member. If it has no prospective parent (is not actively changing
parents), then it is said to be in steady state. Even in steady state, each child (hereafter called a member) is
continuously searching for a better (closer) parent. (Note that this is not true for feet, which assume that the head is
the best possible parent.)

The basic process goes as follows:

1. Periodically find a random parent-side member by sending a Get Member Information query tree-anycast to the
parent. The period used increases over time, as closer parents get harder and harder to find.

2. Add or refresh the found potential parent in the parent-side member list. (If a potential parent is to be deleted
from the list, which to delete is an issue for study.)

3. Determine the distance to the new potential parent by sending, unicast, one or more Get Member Information
queries, and timing the replies.

4. If the new potential parent is found to be significantly closer (in latency) than the current parent, make it a
prospective parent and try to acquire it according to the procedure of Section 8.1.2.

In what follows, the above basic steps are described in more detail.

The Get Member Information message tree-anycast to the parent should request statistics information. This will give
some general knowledge about the discovered member, such as how long it has been a member of the tree (which is
probably a good predictor of how long it will continue to be a member of the tree).

We desire the contents of the parent-side member list to have two attributes. First, the members listed should be up
and still members with high probability. This is important for being able to quickly find a new parent. Second, the
members should be relatively close.

To some extent these two goals must conflict. Assuming that different members will have different membership times
and different reachabilities, it is important to know of at least a few members that will be up with high probability
even though they are far away. Once this is satisfied, however, it is useful to also keep a number of nearby members
in the list, even if their future status is less certain. Some care must therefore be taken in maintaining the list.

An open issue is that of how to be confident of the measured latency to the discovered member. There are two problems
here. The first is that of filtering out the noise from the measurements to get an accurate reading. Significant amounts
of research have been done in this area, so we should be able to borrow something decent. The second is knowing
what the effect of joining the new member would be, since it means that the new member would have to forward that
much more traffic.

A particularly potent example is that of a PC sitting at the end of a modem receiving a video stream. Assuming the
PC has no children, the delay to that member might be reasonably small when the measurement is being made, but
would grow significantly as soon as the member has to transmit the video stream back over the modem connection.
(One could argue that such a member shouldn’t be a transit member in the first place, but that is another matter.)

Gathering the right statistics, such as a member’s Maximum Available Bandwidth, may help with this sort of problem.
The Get Member Information messages used to make the measurements should also request root path and new neighbor
capacity information.

If the newly discovered potential parent is found to be close enough to join, and it has new neighbor capacity, then it
is considered a prospective parent, and the process for joining is started (Section 8.1.2).

If the potential parent doesn’t have new neighbor capacity, then the member should determine if a coordinated switch,
as described in Section 8.4, is appropriate. Before doing this, it may also check the distance to the children of the
desired parent, on the assumption that those children will be relatively close to the desired parent, and therefore
relatively close to the member.

The frequency with which new potential parents should be discovered (using the anycast Get Member Information
message) should decrease over time. This is because, as the member finds better and better parents, it will become
progressively harder to find still better parents. It will also become less important to find still better parents, as each
successive improvement will on average be less than the last.
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Members should probably implement an algorithm that increases the time between searches with each successive failure
to find a better potential parent, and decreases the time each time a better parent is found. This way, a member will
aggressively search out better parents at first, when much is to be gained by doing so, and slow its activity over time.

Finally, members should place a ceiling on the amount of traffic they are willing to spend on this background opti-
mization activity. In particular, a member should not devote more than something like 10% of the total traffic of the
tree (including both application and control frames) to trying to improve it.

8.8 Quit Group

When a member is to quit a group, it should, wherever possible, arrange for effected members to react appropriately
in advance. This is most important for children of the quitting member, since they must find new parents, and should
do so with a minimum of disruption to the flow of frames. The quitting member, however, should also inform its
parent, and any systems for which it has unexpired pairwise knowledge (rendezvous and other transit members).

Upon deciding to quit, the member should first, if at all possible, send a Quit query to each of its children, with
a subtype of Anticipated. After it receives Quit messages from all of its children, it may send a Quit message of
Completed to its parent, and Destroy Pairwise Knowledge replies to all systems for which it has unexpired pairwise
knowledge. Until it receives Quit messages from all of its children, however, it should continue to forward frames.

If after some reasonable period of time some children have still not quit, the member may sent Completed Quit
messages to its remaining children and stop forwarding frames.

8.9 Excessive Hop Count Expired

A member can generally detect that it is in a loop by having recently generated multiple hop count expired messages
to different members in a relatively short time period. Such a member can test for a loop by initiating a Root Path
Trace message from itself. This Root Path Trace message must have the Subtype set to Parent Only. This is because
the trace is checking for an active application frame loop, which won’t occur with a prospective parent.

If there is a loop, the initiating member will detect it, either because it receives the Root Path Trace query it initiated,
or because it receives a Root Path Trace reply with a loop in the root path.

If the member so detects a loop, it should immediately drop its parent, and attach to a new parent as described in
Section 8.1.

8.10 Neighbor Reachability Detection

In order to maintain an intact tree, members must of course detect, in a timely manner, when their neighbors have
become unreachable. What constitutes timely depends on the application. In particular, different detection algorithms
are used depending on whether detection can take place at the time an application frame is transmitted, or whether
detection must take place before an application frame is delivered.

The former case includes non-realtime applications, where the maximum acceptable application frame latency is
substantially greater than the time it takes to establish a new neighbor. It also includes realtime applications where
some seconds of frame loss is acceptable. The latter case includes other realtime applications. These two cases are
described separately in the following two sections.

8.10.1 Application-Frame Time Detection

Neighbor reachability detection is generally easier and more efficient if tree repair can take place at the time that
application frames are transmitted. The basic strategy is simple. When a frame arrives at a member to be delivered
and is transmitted to a neighbor, the acknowledgement of the frame serves as the indication that the neighbor is still
up. Likewise, lack of an acknowledgement is an indicator that the neighbor is down.

If the neighbor is discovered to be down, the action taken by the member depends on whether the neighbor is a parent
or a child. If it is a parent, the member obtains a new parent as described in Section 8.1, and then transmits the
frame to the new parent.
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If it is a child, the member must inform the children of the child that their parent has become unreachable. In general,
a member is not expected to know the children of its children. Therefore, it broadcasts a Member Down Message
(Section 5.11) over the mesh. The Member ID Record contains the Member ID of the (apparently down) child.

If the child was a head (as indicated by the Head bit of the Flags field of the YTMP fixed header), the member should
reserve the new neighbor capacity freed up by the loss of the child for the soon-to-be-elected head for the same cluster.
It should be held for roughly 4 minutes, to allow adequate time for the new head to be elected. The reservation is
held in the name of the former head. The replacement head will identify the former head in its Join message.

Upon receiving the Member Down message, each member checks the Member ID Record to determine if the member
is its parent (Section 9.2.1 describes what to do in the case of a foot). If it is, the member tries to contact its parent
by sending a Get Member Information Message over the existing connection. If it is determined that the parent is
down, the member obtains a new parent as described in Section 8.1. If it is determined that the parent is up, the
member does nothing.

Note that we intentionally do not attach the original application frame to the broadcast message. While in some
cases doing so would save some overhead, it is generally awkward to do it, for a couple of reasons. First, if the
source is identified in the frame using the Source Code, a YDP Frame Source Option would have to be attached to
inform members of the source. Second, it generally complicates the implementation to mix application and control
information in the same frame.

8.10.2 Pre-Application-Frame Time Detection

The only way to detect that a neighbor has become unreachable before application frames are sent is to periodically
ping the neighbor (using Get Member Information queries). This is a classic approach, and has the basic trade-off
that shorter detection latencies require more frequent pings.

Acknowledgements to application frames (or, if datagram, rate or congestion control feedback) can serve as an indica-
tion that the neighbor is up. During the times that no application frames are being sent, pings must be sent at some
frequency. Different applications will have different needs for ping frequency.

One reasonable approach, however, would be to ping less and less frequently the longer that applications frames are
not sent.

9 Cluster Algorithms

This section describes the various algorithms for operation in a cluster, including:

e how to forward frames over a cluster,

e how a member determines if it is attached to a cluster,

e whether it must become the head member for the cluster,

e how to manage parent selection within the context of a cluster,

e how to manage mesh links within the context of a cluster.

9.1 Cluster Discovery

Every member, whether or not it already has a (non-cluster) parent, continuously monitors to see if a cluster has formed
(or disappeared) on each of its shared media. If a cluster exists, the member further participates in an algorithm to
determine its status (head or foot) in the cluster.

There are two kinds of clusters, static and dynamic. Dynamic clusters are formed over a single shared-media (the
cluster membership do not span any routers), and the head of the cluster is dynamically selected. Static clusters have
an administratively assigned head, which may be off the shared media, but should not be far away (ideally no more
than a single router hop).
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Only two members are required to form a cluster. If there are three or more members, IP multicast is used for
forwarding frames. Otherwise, IP unicast is used. Either way, IP multicast is used to run the configuration algorithm.

Specifically, members:

e join (and therefore listen to) the IP multicast groups (for each seperate interface) for the clusters.

e periodically transmit a Cluster Announce Message over the IP groups.

FEach member joins an IP multicast group for each host interface. The IP group addresses for the groups, as well as
the UDP port numbers, are pseudo-randomly selected from a range of values. The following table defines the ranges:

Note that these group addresses come from the global scope addresses assigned to IPv4. This is intentional. The
scope of cluster discovery is limited by the IP time-to-live field. Therefore, the administrative scoping of these groups
is, strictly speaking, unecessary. All other things being equal, it would still be preferable to use the administratively
scoped group addresses (link-local or organization-local). There are two problems with this.

First, the range of available addresses is smaller for the administrative scopes, particularly organization-local, which
contains only roughly 16,000 addresses. Second, there is likely to be more other groups using these addresses, in the
local environment, than the global ones. Both of these problems increase the probability of collisions (multiple groups
using the same group address and port).

Note also that multicast protocols other than IPv4 may be used, for instance on networks that run a proprietary
multicast protocol. For these cases, the group address selection has not yet been specified.

The algorithm for selecting the value for each range is given in Section 9.11.

In the algorithm for configuring the cluster, there are two major states: electing, and elected (expressed by the Election
State bit in the Flags field of the Cluster Announce Record). As long as a head has already been selected and is not
known to be unreachable, the cluster is in elected state. Otherwise, it is in electing state, by the end of which a head
will have been elected.

In the context of cluster operation, a member can be either a head, a foot, or a candidate. It is a candidate if it is
participating in an election, and a head or a foot otherwise. Being a candidate is a transient state.

The member operation as a foot, head, and candidate are discussed below. After that are brief sections describing a
member’s joining and quitting operations.

9.2 Foot

This is steady-state for a foot. In this state, the member knows that it is a foot, knows who its head is, and knows
the information needed for transmitting and receiving frames over the cluster.

In this state, the member has two basic jobs, determining if the head is still reachable, and informing the head as to
whether 1 or more than 1 foot exists. The former job is part of normal neighbor reachability detection, as described
in Section 8.10, though it works slightly differently in the case of clusters.

The latter job is for the purpose of informing the head as to the number of feet: 0, 1, or more than 1. This is so
that the head knows whether to stop transmitting application frames to the cluster, or whether to use TCP or some
multicast transport protocol.

9.2.1 Head Reachability

For the purpose of determining head reachability, there are two sub-states: pinging and not-pinging. In the pinging
state, the foot (and all other feet) is attempting to determine if the head is still reachable. The pinging state can be
entered four ways:

1. expiration of a periodic timer,
2. receipt of a Member Down Message with the head listed as the down member,

3. a member’s initial attachment to a cluster,
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4. receipt of a Cluster Announce Message with Member Status foot and Election State elected, from another foot
(this is called a head ping).

The first two ways of entering the pinging state correspond to the Pre-Application-Frame Time Detection and
Application-Frame Time Detection methods for determining reachability of a neighbor respectively (Section 8.10).
The third way is part of the initialization process for a new group member. When a member enters the pinging state
in one of these three ways, it first immediately transmits a head ping message. The fourth way is in response to
another foot member having already entered the pinging state.

Whether the pinging state is entered because a member transmits a head ping or receives a head ping, the member
sets a short head-reply expiration timer. The value of the timer is randomly chosen to be between roughly 3 and 6
seconds.

If after the timer is set another head ping is heard, the head-reply expiration timer is canceled and restarted (thus
suppressing the member’s own ping in deference to another member’s ping). If any frame is received from the head,
the head-reply expiration timer is canceled, and the member goes back into the not-pinging state.

In general, anytime a foot receives any frame from the head, it goes to the elected state, and sets a electing-hold-down-
timer for 30 seconds (resetting it first if it was already set). Until this timer expires, it must not enter the electing
state.

If no frame is received from the head after at least four unanswered head pings are heard over a period spanning at
least 24 seconds, the head is assumed unreachable, and the member becomes a candidate.

9.2.2 Foot Announce

In order for a head to decide whether to stop transmitting application frames to the cluster, or whether to use TCP or
some multicast transport protocol, it must know whether there are zero (stop transmitting), one (use TCP) or more
than one foot (use a multicast transport protocol).

The head should also know if there are transit members, stub members, or both, among the feet. This is for the
purpose of forwarding anycast and broadcast frames.

In order for the head to know this, the feet must periodically advertise their existence. They do this at a relatively
low frequency, roughly once every half hour.

Specifically, each foot sets a long-foot-count timer to a random value between 20 and 40 minutes. Each foot member
cancels and restarts the timer if, before the timer expires, the foot hears Announce Messages from at least two different
other feet, both with the same or a superset of listed Multicast Transport Protocols, and, if the foot is a transit member,
at least one of which is also a transit member. When the timer expires, it transmits an Announce Message and restarts
the long-foot-count timer.

If a foot receives a Cluster Announce Message from another foot with the Quit Status set to 1, the foot sets a short-
foot-count timer, at a random value between 5 and 10 seconds. It also sets this timer any time a new member becomes
the head.

If before the short-foot-count timer expires the foot hears Announce Messages from the set of feet described above, it
cancels the short-foot-count timer but does not restart it. This timer is operated independently of the long-foot-count
timer. The purpose of the short-foot-count timer is for the head to learn quickly when the number of feet of each type
has shrunk, particularly to zero.

Transit feet should also remember the number of responding feet, whether they are stub or transit, and the multicast
transport protocols common to all cluster members, in case they are elected head.

9.3 Become Head

A member becomes a head when it has either ¢

be a head (static clusters).

‘won” an election (dynamic clusters) or is administratively assigned to
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9.3.1 Selecting Cluster Values

When a member becomes a head, it must determine the value of the IP TTL and MTP Type fields, and the value of
the ID Code field of YIDP.

If the values of these fields were already established before the member became a head (that is, there was a previous
head), they remain the same values. This way, the current instantiation of the multicast transport protocol does not
need to be restarted. Otherwise, the values are selected as follows.

If the cluster is dynamic, then the IP TTL must be 1. If static, then the IP TTL will have been configured.

The MTP Type is selected among those that have been advertised by all known feet. If there are multiple such
protocols, then the selection is made according to some locally defined policy.

The selection of the ID Code field is described in the YIDP protocol specification.

9.3.2 Selecting a Parent

The head must of course find a parent of its own. If there was a previous head, then the newly elected head will
attempt to join the same parent. How this is done depends on the circumstances under which the new head is replacing
the old.

If the old head has simply become unreachable, then the new head tries to join the same parent using the Dependent
Emergency joining procedure (Section 8.1.3). If this fails, the new head goes through the normal process of searching
for and joining an appropriate parent.

If on the other hand the old head is gracefully quitting, then a Replacement Join is used. This procedure is described
in Section 9.7.

Failing this, it goes through the normal process of searching for and joining an appropriate parent.

9.3.3 Obtaining Other Children

If the old head had (non-cluster) children of its own, the the new head should, to the extent possible, accept these
children. It may not be able to accept all or even any of them, depending on its own neighbor capacity.

The new head, immediately upon establishing its own parent, should send uninitiated Get Member Information replies
to the children. It should only do this, however, if it is a transit member and has capacity for children. These messages
should contain the root path and new neighbor capacity of the new head. While they may have already joined other
parents (for instance in the case of the old parent becoming unreachable), this will at least inform them of an alternative
choice.

If the old head had become unreachable, and this was discovered via some mechanism other than the receipt of a
broadcast Member Down Message, the new head should send Member Down Messages, with the old head named as
the down member, unicast, datagram, to the children. These should be sent whether or not the new head has sent
the above-mentioned Get Member Information replies.

9.3.4 Head Announce

The head responds to all Cluster Announce Messages heard from feet by immediately transmitting a Cluster Announce
Message, with the exception that it should never transmit an identical Cluster Announce Message within 10 seconds
of a previously transmitted message. Anytime the contents of a head’s Cluster Announce Message changes, however,
the head immediately transmits another.

If the head H1 hears a Cluster Announce Message from another member H2 claiming to be a head, and the head H1 is
dynamically elected, then the head H1 immediately becomes a foot and initiates a head ping. If H1 is administratively
assigned and H2 is dynamically elected, then H1 remains a head.

If both are administratively assigned, then local policy determines which becomes a head. Absent any local policy,
the member with the alpha-numerically higher Member name becomes the head.
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9.4 Head Election

The goal of a head election is to elect one and only one head for the cluster. An attempt is made to elect the most
qualified member, defined as follows:

e A transit member is assumed to be more qualified than a stub member.

e Among transit members, the member with the greatest Raw Neighbor Capacity (as advertised in the Cluster
Announce Message) is the most qualified.

e For members with equal Raw Neighbor Capacity, the most qualified is defined as that with the longest Member
Age (also as advertised in the Cluster Announce Message).

e Where Member Ages are identical, the most qualified is arbitrarily defined as that with the alpha-numerically
highest Member name, and in the case of identical member names, the highest port number.

A foot becomes a candidate whenever:

1. it determines that the head has become unreachable,

2. it receives a Cluster Announce Message from another candidate, and it is not in the electing hold-down period,
or

3. it receives a Cluster Announce Message from the head with the Quit or Anticipated Quit Status bits set.

Upon becoming a candidate, the foot must not change its advertised Member Age, even if the actual member age
increments while it is a candidate. It must also not change its advertised Raw Neighbor Capacity, even if its actual
raw neighbor capacity is changed while it is a candidate. This is to prevent the member’s qualifications from changing
during the course of an election.

If the foot becomes a candidate via the first means, then it immediately transmits a Cluster Announce Message.
Independent of how it became a candidate, it sets its short-electing-timer to a random value between roughly 3 to 6
seconds.

If a candidate hears a Cluster Announce Message from a head, it returns to being a foot (and, as already mentioned,
(re)starts its electing-hold-down-timer). If a candidate hears a Cluster Announce Message from another candidate,
where that other candidate has better qualifications, the candidate restarts its short-electing-timer (without transmit-
ting any message).

If a candidate’s short-electing-timer expires, it transmits a Cluster Announce Message and restarts its short-electing-
timer. (Note that in this algorithm a candidate may sometimes transmit a Cluster Announce Message even if there is
a better qualified candidate correctly transmitting Cluster Announce Messages. This is because of the random skew
in the short-electing-timer.)

If a candidate transmits at least 4 Cluster Announce Messages over at least a 24 second period, without receiving
any Cluster Announce Messages from better qualified candidates, the candidate becomes the head. It immediately
transmits a sequence of four Cluster Announce Messages, spaced randomly between 3 and 6 seconds apart.

If a candidate receives at least 4 Cluster Announce Messages from another candidate C1 over at least a 24 second
period, without receiving any Cluster Announce Messages from still better qualified candidate C2, then it expects
candidate C1 to become the head. It sets an expecting-head-timer for a random time between 40 and 80 seconds.
During this time, it stays a candidate (that is, periodically transmitting Cluster Announce Messages).

If, after the expecting-head-timer expires, no member has declared itself to be the head, the expected head C1 is
considered to be disqualified from the election, and the candidate continues the election, but ignores any received
Cluster Announce Messages from the disqualified candidate.

Note that this algorithm requires fully symmetric connectivity between participants. In other words, for all members
A and B, if member A can receive the messages of member B, then member B must also be able to receive the messages
of member A.
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9.5 Joining a Cluster

When a member first starts participating in the cluster algorithm, it assumes that it is a foot. It immediately initiates
head reachability detection on that cluster (see Section 9.2). If there is another head established on that cluster, this
will cause that head to transmit a Cluster Announce Message, thus allowing the new member to quickly learn the
relevent cluster information (IP TTL, ID Code, and MTP Type), and start receiving frames.

Otherwise, when the member finds that there is no reachable head, it will become a candidate, and from there either
become the head, or lose the election to another member that joined the cluster at roughly the same time.

If a member is the sole member of a cluster, it considers itself clusterless, but continues to listen to the cluster for other
members’ Cluster Announce Messages. It also periodically transmits a Cluster Announce Message over the cluster, at
a period of roughly 1 hour, just in case another member on the cluster considers itself to be clusterless as well.

9.6 Foot Quit

When a foot quits a cluster, it transmits a Cluster Announce Messages to the cluster, with the Quit Status bit set.
This triggers Cluster Announce Messages from other feet, allowing the head to determine if the number of feet has
shrunk to one or zero.

It also triggers a Cluster Announce Message from the head. If the quitting foot held pairwise knowledge, then the
Cluster Announce Message from the head should no longer include the pairwise knowledge in its list. If it does, the
quitting foot periodically transmits its Cluster Announce Message until it sees that it has been removed from the
head’s pairwise knowledge list.

9.7 Head Quit

When a head quits a cluster, it should engineer a smooth transition from itself to the new head. The basic steps for
this are as follows:

1. Announce its anticipated quit to the cluster, causing the election of a new head.
The new head becomes the child of the quitting head’s parent.

The new head takes over the job of forwarding application frames between the cluster and the rest of the tree.

- W N

The parent quits the old head. If the quitting head has other (non-cluster) children, it starts receiving application
frames from the cluster (as a foot), and forwards these on to its children.

o

The new head sends uninitiated Get Member Information replies to the children (of the quitting head).
6. The quitting head sends Anticipate Quit messages to the children.

7. When all the children have finally quit the quitting head, it can itself leave the tree.

Note that the whole process would be simpler if the quitting head first quit its own children, and then quit the
cluster/tree. It is, however, better to allow the children to join the new head, rather than find some other parent, for
two reasons. First, given that it is in the same internet “location” as the quitting head, it will be an equally good
parent (to the extent that it has capacity). Second, if the tree is running at or nearly at capacity, this will make it
easier to allow the children to find any parent at all.

The above steps are now described in more detail. First, the quitting head transmits a Cluster Announce Messages
to the cluster, with the Anticipated Quit Status bit set. This triggers an election.

When a Cluster Announce Message with the Head Status set from another cluster member is received, indicating
that the election has successfully completed, the quitting head sends a Quit Message to its parent, listing the newly
elected head as its replacement. As soon as this Quit Message is acknowledged, the quitting head transmits a Cluster
Announce Message with the Quit Status bit set.

This will trigger the newly elected head to Join the parent using the Replacement form of the Join. This in turn
causes the parent to replace the quitting head with the new head as its child. In so doing, it sends a Quit Message



54

to the quitting head. Until this final Quit Message is received, however, the quitting head should continue to forward
application frames between the cluster and the parent.

If the quitting head has other (non-cluster) children, then, immediately upon receiving the Quit Message from its (now
former) parent, it should become a foot, and continue receiving frames from the cluster. It behaves as a foot in all
respects (including sending the appropriate Cluster Announce Messages) except one. That is, it continues to forward
application frames to its children.

It must, however, immediately send Anticipated Quit messages to its children, and go through the process of a parent
quitting its children as described in Section 8.8. Once all of its children have quit it, the quitting head (now a foot)
finally fully quits the cluster, though this time as a foot as described at the beginning of this section.

9.8 Echoing YTMP Messages to the Cluster

Certain YTMP messages sent and received by cluster members should be echoed to the cluster. In other words, they
should be transmitted, as is, over the cluster IP group, using stream transmission. These messages include:

e All Join Message replies with one of the Accept Subtypes received by the head.
o All Quit Messages received by the head.

e All Get Member Information replies received in response to anycast queries transmitted by the head and directed
to parent-side members (as described in Section 8.7).

e All Pairwise Knowledge replies received from other members with a Subtype of Create Mesh.

The first three are transmitted by the head, and contain information useful to a future head. These should be received
by all feet, including stub members (which may be elected head in the absense of any transit cluster members). The
first two are for the purpose of learning the non-cluster children of the head, which is used as described in Sections 9.3.
The third allows a newly elected head to know of parent-side members This is useful for quickly responding to the
loss of its own parent, and for finding a better parent.

The last is used by the head member to maintain its cluster pairwise knowledge list, and by feet to trigger pairwise
knowledge creating and deletion. These messages should be received by all cluster members except stub members,
which do not maintain pairwise knowledge. The use of these messages is described in Section 10.2.

9.9 Forwarding Frames over a Cluster

This section describes how to forward frames of the various delivery modes (multicast, unicast, broadcast, and the
two anycasts) to and from a cluster.

There are two ways a cluster member can view the feet: as a single member (the cluster child), or as multiple members
(the feet). Both views can be taken at different times, depending on the delivery mode of the frame. In the multicast,
broadcast, and anycast modes, the Dest Code field of the frame header indicates whether the frame is to go to transit
members only, or both transit and stub. If the cluster child contains a single transit foot, it is considered to be transit,
even though the individual feet cannot themselves have child neighbors. Otherwise it is considered to be stub, even
though strictly speaking the head does forward frames.

In what follows, transmitting “to a cluster” or receiving “from a cluster” is taken to mean transmitting to the IP
multicast group of the cluster or receiving from the multicast group of the cluster. Frames transmitted to the cluster
always contain the source address of the transmitting member. Frames received from the cluster with a member’s own
IP address as the source address are ignored.

9.9.1 Multicast Delivery Mode

A multicast frame received from the cluster is never transmitted to the cluster. A frame originating at a foot is
transmitted to the cluster. The head receives it and forwards it to its other neighbors (even if the head is, strictly
speaking, a stub member).
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A head, receiving a multicast frame from anywhere other than the cluster, forwards it to the cluster unless the Dest
Code is transit only, and the cluster is stub.

9.9.2 TUnicast Delivery Mode

In the case of datagram, a unicast frame is always delivered IP unicast directly to the destination, regardless of the
destination’s cluster status.

In the case of stream, the reverse path to the destination must be known. When a cluster member transmits a multicast
frame with a reverse-path enabled YDP Frame Source Option, all other transit cluster members, and in the case of a
stub cluster, all cluster members, must record it as being attached to the cluster. In the case of feet, however, this is
done only in preparation for potentially becoming a head later on.

Unicast frames originating at a foot are transmitted to the cluster, whether or not the destination is on the cluster.
If the destination is on the cluster, it will receive the frame from the cluster. Other feet ignore all unicast frames
received from the cluster and not destined for them.

When the head receives a unicast frame from the cluster, and the destination is on the cluster, the frame is ignored.
If the destination is not on the cluster, the head forwards the frame according to the reverse path. When the head
receives a unicast frame from other than the cluster, and the destination is on the cluster, the frame is forwarded to
the cluster.

9.9.3 Broadcast Delivery Mode

All cluster members consider the cluster to be a neighbor for the purpose of forwarding broadcast frames. If a cluster
is stub, a broadcast frame with a Dest Code of transit only, originating at a foot, is forwarded to the cluster, but is
ignored by all members except the head. The parent, if it is a stub, treats the frame as though it originated at itself,
and forwards it to its parent.

A head, upon receiving a transit-only broadcast frame from a non-cluster source, does not transmit it to the cluster
if the cluster is stub.

9.9.4 Tree and Mesh Anycast Delivery Modes

For the purpose of selecting the next hop for an anycast frame (that is, randomly choosing among the possible next
hops), a head considers the cluster child to be a single neighbor. A foot considers the head to be a single neighbor,
but does not consider the (remainder of) the cluster child to be a member.

If a foot selects the head as the next hop, then the frame is transmitted directly to the head (using IP unicast). If the
frame is stream, then a TCP connection must be established first.

If a head selects the cluster child as the next hop, then it must determine which of the individual feet should receive
the frame. To do this, the parent simply selects randomly among the feet that it happens to know about, based on
various frames recently transmitted by feet (recognizing that this is not true random distribution among the feet).

If the frame is mesh anycast, and the “hop count” value in the upper 8 bits of the Dest Code field is 2 or greater (after
it has already been decremented), and the member selected by the by the head is a foot without a mesh link, then
the head can simply decrement the hop count by 1, and transmit it back to itself (or, equivalently, decrement the hop
count by 2, and reselect the next hop). The reason for this is that such a foot would have no option but to decrement
the hop count, and transmit the frame back to the head.

9.10 Multiple Clusters

If the host where a member resides has multiple interfaces, the member runs the cluster configuration algorithm
separately over all of the interfaces. The member may continue to run the cluster configuration algorithm over any
interface for which no other cluster members exist. As long as one or more clusters have one or more other members,
however, the member must select a single interface over which to participate in the cluster.
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Type First Last Size
Port 32768 65535 15 bits
IPv4 Group Address | 232.0.0.0 235.255.255.255 26 bits

Table 1: Ranges of Port and Group Address Values for Cluster Configuration

While it is free to listen to the IP groups of the clusters where it is not participating, it may not tranmit to those
groups.

(Note that while, strictly speaking, a member could be a head for multiple clusters, or a head for some clusters and a
foot on another, allowing this opens the possibility of a tree loop among the heads and feet of clusters. The simplest
way to eliminate this possibility is to limit cluster participation to a single cluster only.)

9.11 Generating Pseudo-random Port and Address Values

This section describes how to generate the pseudo-random port and group address values from the ranges given in
Table 1. The low and high values of each range are given by the columns First and Last in Table 1. Size contains the
number of values in the range, followed by the number of bits required to express the size.

The method for pseudo-randomly selecting the value is to generate a pseudo-random number of the appropriate size
(number of bits N), and then add that number to the first value in the range.

The Group ID is used as the key for generating the pseudo-random number. This way, all members generate the same
values for a given group. The Group ID consists of the Group Name (the Rendezvous Host DNS name), the Group
Subname, and the Group UDP port number. Specifically, the key is the string of bytes consisting of the Group Name,
the Group Subname, and the port number concatinated together.

The Name and Subname must be all lower case (ASCII). Neither the Name or the Subname have a trailing zero
byte—the first byte of the Subname immediately follows the last byte of the Name. The low order byte of the key is
the leftmost byte of the Name. Likewise, the first byte of the Subname in the key is the leftmost byte of the Subname.
The first byte of the port number in the key is the low order byte of the port number.

For instance, the key for a Group ID with Name “FOO.com”, Subname “Bar”, and Port 1234 is (in hex):

low order high order
66 6f 6f 2e 63 6f 6d 62 61 72 04 42
f o o . ¢ o m b a r [1234]

The MD4 message-digest algorithm is used to generate a 128-bit digest from the key. This digest is then “folded” into
the desired range of values as follows:

1. Initialize a variable, called output, of the appropriate size (N bits), to all zeros.
2. Generate a 128-bit digest from the key using MD4.

3. Using the low-order N bits of the digest, do an exclusive OR of the digest with the output, putting the result in
output.

4. Shift right the digest by N bits, so that the low-order N bits disappear, and the high-order bits are replaced by
0’s.

5. If the digest is non-zero, repeat from step 1.

6. If the digest is zero, quit. Output contains the pseudo-random number to be added to the first value of the
range.

10 Mesh Maintenance Algorithms

The primary purpose of the mesh topology is to provide a means of frame dissemination that is highly reliable—that
is, reaches all group members with high probability. This requires a mesh topology that is connected with very high
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probability, which in turn requires that all members maintain several mesh links with other members.

The methods for maintaining the mesh topology differ depending on whether a member is a cluster cluster member
(including the cluster head) or not. The first section below describes the case where the member is not a cluster
member. The subsequent section describes the case where the member is a cluster member.

10.1 Non-Cluster Member Mesh Maintenance

For the purpose of maintaining a mesh topology that is connected (not partitioned) with extremely high probability,
each transit member, including the root, must maintain a list, called the mesh member list, of randomly selected
members in the group. Broadcast or mesh anycast frames are sent to members from this list as well as to neighbors.

The means of finding members for the mesh list are similar to that of finding members for the parent-side list in that
an anycast message is used to discover another member. The differences are that:

1. the recipients of the anycast are not limited to parent-side members,

2. list entries are pairwise. That is, if member A has member B in its list, then member B also has member A in
its list, and

3. the Pairwise Knowledge Message is used rather than the Get Member Information Message.

The number of members in the list is a trade-off between insuring a connected mesh and minimizing the overhead in
keeping the list up-to-date. Off-hand, 4 or 5 entries is probably sufficient, but this should be studied.

The reason list entries should be pairwise is because the mesh should be a connected topology with high probability.
If the entries are not pairwise, then there is a reasonable probability that a given member is unknown to all other
members, even if it knows about a number of other members, The mesh would therefore not be connected. If entries
are pairwise, a given member can insure not only that it knows about other members, but that other members know
about it.

The algorithm for keeping pairwise entries is a lazy one. The basic “goal” of each member is to keep a certain number
of entries in its mesh list. The entries in the list each have a timeout associated with them. When an entry is timed
out, or deleted through the reception of a destroy Link Mesh message, the member should sooner or later send another
Link Mesh create query to establish another entry.

A list can easily exceed its target number of entries, because it cannot control the number of link mesh queries it
receives. In general, this is ok. If, however, the list gets way too large, the member can choose to simply ignore
received queries. When the sender of the query does not receive a reply after some period of time, it will generate
another anycast query, which will probably be delivered to a different member.

10.2 Cluster Member Mesh Maintenance

For a cluster member, the simplest way to maintain the mesh topology would be for it to operate exactly as a non-
cluster member does—that is, maintain its own mesh links independently of the other cluster members. This is
problematic in the context of a cluster, for scaling reasons. Imagine, for instance, a cluster with 20 members, each of
which maintains 4 mesh links (that is, 4 pairwise knowledge entries). Any given broadcast frame would be received
or transmitted by all 20 members 4 times, for a total of 80 frames, and their acknowledgements, crossing the same
shared media (all with the same content).

The next simplest thing to do would be to have only the head maintain pairwise knowledge. The head could additionally
inform the feet of the pairwise knowledge. The problem here, of course, is that if the head crashes, broadcast messages,
such as a Member Down message sent in response to the crashed head, will not reach the feet.

Pairwise knowledge is therefore distributed among transit cluster members, but in such a way that the total amount
of pairwise knowledge does not exceed that normally held by a single non-cluster member. The algorithm for this goes
as follows.

Every transit cluster member maintains a list of pairwise knowledge that they themselves setup, either by initiating or
responding to a Pairwise Knowledge query. This is the usual list already described in Section 10, and is here called
the member pairwise knowledge list.
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In addition, every transit cluster member maintains a list of cluster pairwise knowledge entries, here called the cluster
pairwise knowledge list. This is pairwise knowledge cumulatively held by all members in the cluster, but only that
established by a cluster member (that is, the cluster member initiated the pairwise knowledge by transmitting the
first Pairwise Knowledge query). The entries in this list identify both ends of the pairwise knowledge, as well as the
other information normally associated with a pairwise knowledge entry (for instance, the expiration time).

Cluster members obtain the cluster pairwise knowledge list entries from two sources:

1. Individual members echo, to the cluster, all unicast Pairwise Knowledge replies the received that resulted in
adding or refreshing entries in the member pairwise knowledge list.

2. The head lists all entries in its Cluster Announce messages.

The former method is the initial means of learning the entries. The latter allows new cluster members to quickly learn
the list.

The cluster pairwise knowledge list must have at least three and no more than four entries. If the list has only three
entries, and one or more transit cluster member hold none of them, then they make an attempt to establish the fourth.
If, on the other hand, the list has four entries, and one or more cluster members holds two or more of them, then
those members will make and attempt to destroy one of their entries. In this way, there will generally be three or four
entries, and they will be distributed across as many cluster members as possible.

Specifically, whenever the head transmits a Cluster Announce Message (which contains a list of the pairwise knowledge
entries), each transit cluster member starts/continues or cancels a timer according to the following table:

Number of Number of Cluster List Entries
Member Entries <3 3 4 >4

0 Start Short, | Start Short Cancel Start Long,

Create Create Destroy
1 Start Long Cancel Cancel Start Long,

Create Destroy
>1 Start Long Cancel Start Short, | Start Short,

Create Destroy Destroy

Start Short means to start a timer (or allow an already started timer to continue) for a randomly set time from 0
to 5 minutes. Start Long means to start a timer (or allow an already started timer to continue) for a randomly set
time from 5 to 10 minutes. Create means to create a pairwise knowledge entry if the timer expires, as described in
Section 10. Destroy means to destroy a pairwise knowledge entry if the timer expires.

The effect of the timer is that typically one member (though occasionally more than one) will accomplish the task
(create or destroy) and echo the result to the channel, causing the others to cancel their timers. Through having long
and short timers, the members with fewer (greater) entries are preferencially chosen to create (destroy) entries.

The echo of course also serves to inform the head of the added or deleted pairwise knowledge. This causes the head to
update its list and transmit another Cluster Announce message. Anytime a foot receives a Cluster Announce message
from the head that either lists pairwise knowledge that it does not hold, or does not list pairwise knowledge that it
does hold, it should repeat the appropriate Pairwise Knowledge Message.

All transit cluster members are free to accept requests from other members for pairwise knowledge at their discretion.

11 Open Issues

11.1 Full Tree

If a tree is full (all members have no capacity for additional stub members), such that a new stub member cannot join,
we should probably have some kind of message that can be sent to the rendezvous indicating as much. This could in
turn be forwarded to a human, who might be able to do something about it.
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11.2 Dependence on Rendezvous

One of the significant advantages of IP multicast (at least in its DVMRP form) over YTMP is that the former is more
robust, specifically because it does not depend on any special purpose members such as rendezvous.

One way to avoid this weakness in YTMP is to use IP multicast itself in lieu of rendezvous for tree discovery. Exactly
how this would work is not clear, but it is clear that one wouldn’t want one IP multicast group per yoid group.
This would defeat one of the purposes of having yoid—that is, to overcome the “per-group” scaling difficulties of IP
multicast routers.

Instead, one IP multicast group could be shared among many yoid groups. The IP multicast group would only be
used as a backup, in case the rendezvous for any given group were unavailable. The basic idea is that members would
join the IP multicast group when they joined yoid group. Newcomers would do an expanding ring search on the IP
multicast group to find existing group members.

For this to work it would have to be self-configuring like the rest of YTMP. This means that the IP multicast address
used would have to be self-selected, perhaps based on a hash of the group name. Detection of IP multicast capability
at the host should be automatic.

11.3 Discovery of Infrastructure Members

Need to discuss the case where a member should try to discover and attach to an infrastructure member rather than
that of another application member.

11.4 Security

Clearly security functions need to be added as soon as possible. I can imagine a wide range of security functionality,
from a simple access list at the rendezvous, to full knowledge of the security information of all members by all other
members. It seems likely, in any event, that the rendezvous will be the focal point for all security functions.

11.5 Group With Identical Group IDs

It is of course possible for two groups with the same Group ID to be created at different times. Given, however, that a
group can continue to exist without the rendezvous, it is possible for a new group to be created while a former group
with the same Group ID still exists. Once this happens, without safeguards put in, the old and new groups are very
likely to merge (because of the root partition discovery functionality).

Whether this is a feature or a bug depends on the situation, but generally speaking it would have to be considered a
bug. For now, we do nothing about it. When security features are added, this will certainly become detectable and
fixable (for instance, because each group will have an encryption key associated with it).

11.6 Determining Spare Capacity

Not enough is said in this spec about how a member goes about determining spare capacity for itself.

Towards that end, each member must have a good idea of what its basic raw capacity is (outgoing and incoming BW).
It should probably base this on the levels of performance it is able to achieve with minimal packet loss.

It also must know the flow required for the given group, and the distribution of senders (to know whether a new
neighbor is likely to contribute to incoming flow as well as outgoing). By taking the difference between capacity and
group flow, the member should be able to make a reasonable estimate of what its spare capacity is (normalized by the
group flow).

11.7 Excess “Background” Activity

Background activity is that activity used to improve the tree, or maintain its correctness. Generally speaking, members
should limit the number of frames sent in support of background activity to a fraction of the number of applications
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frames (5% - 10%). This means that trees with very little traffic will remain highly non-optimal. This is ok, though,
because the cost of optimizing such a tree would generally be more than the savings.

11.8 Infrastructure-based Members

This specification only describes the algorithms for configuring groups where the members and the applications are co-
resident in the same host. It is also desirable to have the option of infrastructure-based members. These are members
that are installed in the infrastructure for the purpose as acting as transits for groups for which no application is
co-resident,.

For this to work, member members must 1) know that such infrastructure members exist, 2) know that they can be used
for a given group, and 3) must join the infrastructure member, and get the infrastructure member to join the group.
The first can be accomplished through the use of well-known DNS names (something like, yoid.in.member.domain).
The second will require additional information about the group be set by the application creating the group, and
transmitted by the rendezvous to newcomers. The third will require an addition message type.

None of this appears particularly hard, it just has to be specified.



