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Abstract. Although mobile hand-held devices (MHDs) are ubiquitoudatg lit-
tle is know about how they are used—especially at home. gnghper, we cast a
first look on mobile hand-held device usage from a networkpettive. We base
our study on anonymized packet level data representing thare20,000 resi-
dential DSL customers. Our characterization of the traffiongs that MHDs are
active on up to 3 % of the monitored DSL lines. Mobile deviaest Apple (i. e.,
iPhones and iPods) are, by a huge margin, the most commoatyMbsIDs and
account for most of the traffic. We find that MHD traffic is domiad by multi-
media content and downloads of mobile applications.
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1 Introduction

Today advanced mobile hand-held devices (MHDs, e. g., iPhand BlackBerrys) are
very popular. MHDs have evolved rapidly over the years—fpure offline devices, to
cell phones with GSM data connectivity, to 3G devices, arndarsal devices with both
cellular as well as WiFi capabilities. Their increased gpiap and processing power
makes these devices all-in-one PDAs and media centersy$ad&lDs can be used
to surf the Web, check email, access weather forecast ankl gtmtes, and navigate
using GPS based maps—to just name some of the prominentdealihis increase in
flexibility has caused an increase in network traffic. Indeedlular IP traffic volume is
growing rapidly and significantly faster than classic biead volume [15].

We, in this paper, cast a first look at Internet traffic causgdaniobile hand-held
devices. We use anonymized residential DSL broadbandstrapanning a period of
11 month, to study MHD behavior and their impact on netwoikges We are thus able
to observe the behavior of MHDs when they are connected vid gtihome and com-
pare their traffic patterns to the overall residential tcafaracteristics. Some devices
(most notably iPod touch and iPhone) require WiFi connégtirather than cellular
connectivity for some services. Other services are momhiito be used via cellular
connectivity due to user mobility, e. g., looking up directs on Google Maps, while
walking around town or driving. Although, we in this papetyfocus on residential
MHD usage and not MHD usage in cellular networks, our anslgsies first insights
into what kind of services users are interested in when thegtzhome and have access
to all services. This information is crucial for 3G cellufaoviders to anticipate usage
patterns and future traffic growths.
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Table 1. Overview of anonymized packet traces.

MHD HTTP Traffic

Name | Start date | Duration|  Size| # MHDs | Volume | % of HTTP
SEP08 | Thu 18 Sep’08 4am 24h| >4TB >200| >2GB 0.1%
APR0O9 | Wed 01 Apr'09 2am 24h| >4TB >400| >9GB 0.4%
AUGO09a | Fri 21 Aug’09 2am 24h|>6TB >500| >15GB 0.6%
AUGO09b | Sat 22 Aug’09 2a 24h| >5TB >500| >15GB 0.7%

The remainder of this paper is structured as follows. In 3eee present our data
sets and methodology, Sec. 3 presents our results. In See.diseuss related work
before we conclude our paper in Sec. 5.

2 Data and Methodology

In this section we describe the anonymized data sets ofeesad DSL connections
and our methodology for analyzing them.

2.1 Data Sets

We base our study on multiple sets of anonymized packet-tth@ervations of resi-
dential DSL connections collected at aggregation pointhiwia large European ISP.
The monitor, using Endace monitoring cards, operates abrtb@dband access router
connecting customers to the ISP’s backbone. Our vantage alddws us to observe
more than 20,000 DSL lines. The anonymized packet-levetrare annotated with
the anonymized DSL line card port id. This enables us to wligdistinguish DSL
lines since IP addresses are subject to churn and as suchtdannsed to identify
DSL lines [7]. While we typically do not experience any packsss, there are sev-
eral multi-second periods (less than 5 minutes overallpaee) with no packets due to
OS/file-system interactions.

We use several 24 h traces collected over a period of 11 mauitith gives us the
the opportunity to track changes in mobile device usage tiwer. Table 1 summarizes
characteristics of the traces, including their start, lorasize, and number of observed
MHDs. We note that while the number of observed DSL lines iamabout the same
in each trace, the number of observed MHDs has increaseificigrly.

The data anonymization, classification, as well as apjdingitrotocol specific hea-
der extraction is performed immediately on the secured oreasent infrastructure us-
ing the Bro NIDS with dynamic protocol detection [3].

2.2 ldentifying MHDs

To understand how MHDs are utilized we need to identify ndy aheir presence in
our traces but also their contributions. This is non-ttigie MHD users commonly do
not just operate the MHD over their DSL-line but also/maintymputers or set-top
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boxes. Note, that all devices active via one DSL-line ugugtliare a single IP address.
Therefore, we rely on network signatures which we gathertiseoving and recording
MHD behavior in a controlled environment.

Among the currently popular MHD devices are Symbian basedhes, BlackBer-
rys, iPhones and iPods, Windows Mobile based phones, angl&Aadroid phones [12].
We collected manual traces using tcpdump for all devicesypeept BlackBerrys
With each device we performed the following set of actionsgis wireless access-
point for data collection: connecting to the access-paotessing several Web sites,
watching videos on YouTube, using other mobile applicaidre Weather and Stocks,
checking and sending emails, using Facebook, and updattejling mobile applica-
tions on the MHD.

Analyzing these manual traces reveals that HTTP dominh#epriotocol mix and
that most mobile applications, including Weather, Stoostgs, AppStore, and YouTube,
use HTTP. From our manual traces we extract a list of HTTP-agent strings for each
device and OS combinatidrWe further augment this list by well-known strings from
other mobile devices, e.g., BlackBerrys. This capturessthiags of the standard ap-
plications. However, it is not possible to compile a list dif sser-agent strings that
MHD application writers may use. However, since most relystandard libraries, we
can add patterns for these. For example, most applicatmmAdple devices use the
Apple CFNetwork library for communication and CFNetworluaBly adds its name
and version number to the end of user-agent strings. While@®&X also uses CFNet-
work, the version numbers used by the iPhone and Mac OS X sj@rdiand we can
distinguish them. Based on this collection of user-ageirigs we create patterns for
(i) identifying DSL lines that “host” MHDs andii) identifying and classifying MHD
usage of HTTP.

2.3 Application Protocol Mix

Finding signatures for identifying non-HTTP traffic causgdMHDs is more difficult
since most other application protocols, e. g., POP, do mbtlagice related information
to their user-agent strings. Furthermore, they may useyption.

One obvious approach for overcoming this limitation is tewsse that MHDs and
regular computers are used consecutively, i.e., not usdtkatame time at the same
DSL line. Based upon this assumption one can classify dfidrafter a HTTP request
from a MHD on a DSL line as MHD traffic (relying on a timeout). Wever, we show
in Sec. 3.1 that the underlying assumption is incorrect. Aonitg of the lines shows
contemporaneous activity from MHDs and regular computers.

Therefore, we take advantage of another characteristietofork devices—their IP
TTLs. The default IP TTLs of popular MHDs differ from thosetbe most commonly
used home OSs. The default TTL of iPhones/iPods and Macs iSyédbian uses 69,
while Windows uses 128. This enables us to separate MHD usageregular PC

1 Manual trace collection was performed with Google’s G1 (fid 1.5), Apple’s iPod touch
(iPhone OS 2 & iPhone OS 3), HP’s iPag (Windows Mobile), HTQidlo 3G (Windows
Mobile), Nokia 810 (Maemo Linux), and Nokia E61 (Symbianafks to all device owners.

2 We note that these MHD user-agent strings differ from usemnastrings used by PCs/Macs.
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Fig. 1. Popularity of MHD device types

usage for some combinations of OSs. While we cannot disshgBhones/iPods from
Macs or Windows Mobile from Windows we can use IP TTLs to sefmthe other
combinations. Our observations show that the majority ehé®Ss is Windows while
the majority of MHDs are iPods or iPhones. In order sepatsaied, we first select all
DSL lines for whichevery HTTP request with a TTE of 64 or 69 is originated by a
MHD (as identified via the user-agent). The assumption isdharaffic on these lines
with TTL 64/69 is then caused by a MHD. Thus, we can then usesE)&D [3] on
this traffic to get a first impression of the application pratimix of MHDs. Since this
approach excludes lines with certain combinations of MHD @gular computers we
are left with 54-59 % of the lines with MHDs. In addition, ifafactivity of the regular
computer does not include HTTP we might misclassify itsfizafVe note that we use
this heuristic only for analyzing the application protooak, we use user-agent strings
for all other analyses.

3 Results

After reporting on the pervasiveness of MHDs we focus onrthestocol mix. Then
we characterize MHDs’ HTTP traffic, analyze mobile appii@atusage, and present
results on iTunes and AppStore usage.

3.1 MHD Pervasiveness

On a significant number of the DSL lines we observe traffic fidrDs (see Table 1).
Indeed, in the most recent trag&)G09, 3 % of active lines have MHD activity. More-
over, the contribution of MHDs to the observed HTTP traffi@iso substantial (up to
0.7 % of HTTP bytes). This indicates that some MHD users maljifimore convenient
to use their mobile devices at home even if they have a regalaputer as well. Note,
HTTP’s share of overall traffic volume is 50-60 % [4, 7].

There is a strong temporal trend underlined by the rapid tirowwthe number of
lines with MHDs’ activity and in the MHDs’ HTTP traffic volumé&he number of lines

3 We take NAT devices and our hop distance to the end systenaauunt.
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Fig. 2. Number of lines with MHD activity (top) vs. Number of linesthiHT TP activity (bottom)

with MHDs almost doubled betweesEP08 and AUG09. The HTTP traffic volume
from MHD grew sixfold while the overall traffic volume incread only slightly and the
overall HTTP volume increased by 22 % at our vantage point.

Fig. 1 shows the distribution of active devices types fotraltes. We observe that
Apple devices (iPhone and iPod touch) clearly dominatey boterms of number of
lines and traffic volume (not shown). They account for 86—-90fdHDs’ HTTP traffic
and 71-87 % of the devices. This is in contrast to the markaeshof the devices [12].
Possible explanations are that Apple ugéréind their device very convenient even for
home use and/d(fi) are looking for a multimedia device that “also works as a @ion
Indeed, the iPod Touch is an iPhone without phone capabilg/ note that starting
from APR09 the number of lines with iPods outhumber the number of linéh @l
non-Apple MHDs combined.

We already pointed out that we have a substantial number aflD8s “hosting”
MHDs. Now we want to illustrate how the use of MHDs is distitéx over the course
of a day. To determine how the use of MHDs is distributed actose we plot the
relative number of lines with active MHDs per hour (top) ahd percentage of lines
with HTTP traffic per hour foAPR09 and AUGO09b in Fig. 2. We see that MHDs are
used throughout the day. While we see a similar behavior Wiaking at overall HTTP
traffic, we see that MHD usage has a stronger pick-up in thexmgrAUGO09b even
shows a peak). Overall HTTP traffic on the other hand slowtypaup during the day.
Again the convenience of using the mobile device may be algesxplanation. Users
can use them to check their emails or the weather when ‘istgttieir day”. The low
byte contribution of mobile devices in the morning hoursgns this claim (figure not
shown).

Next, we examine if MHDs and regular computers are used corisely or whether
they are used contemporaneously. To asses this, we congp@adh DSL line and for
any two subsequent HTTP requests their inter-requesst{iiRd s) and label them as
(i) both from MHDs,(ii) both from non-MHDs, of(iii) from MHD and non-MHD.
Using this information and timeouts of one second, one meinaimd five minutes we
compute the number of DSL lines with mixed activity (MHD anahaMHD). We find
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Fig. 3. HTTP content type categories by volume. Comparing MHD wadfi HTTP traffic.

that 33—39% of MHD lines exhibit mixed MHD/non-MHD activityith IRTs of less
than one second. For IRTs of less than one minute (five mihufet 62 % (72 %) of
the lines have mixed activity.

3.2 Application Protocol Mix

While our approach for analyzing the application protoca wf MHDs is limited
(see Sec. 2.3), it still gives us a first impression of MHDaffic composition. We find
that HTTP clearly dominates across all of our traces. HT Tirdmutes 80-97 % of all
MHD bytes. Email related protocols account for more than ¥%he bytes inNSEP08,
2.3-2.5% inAPR09 and AUG09a. However, it drops to 0.2 % iAUG09b most likely
due to a different usage patterns on weekends. In generatheoprotocol has a traffic
share of more than 1.5 % with the exception of 13 % unclasdifédtic in APR09, and
15% RTMP streaming imUG09a, caused by only a handful of MHDs.

3.3 MHD Web Traffic

Given that HTTP traffic accounts for the vast majority of MHBffic we now examine
it more closely to characterize its usage and how it diffeosnf overall HTTP usage.
We use anonymized HTTP headers and identify HTTP requests¥tHDs using user-
agents strings as discussed in Sec. 2.2.

To identify the content-type of each transfered HTTP obyeetjoin information
from theContent-Type HTTP header field and an analysis of the initial part of the RTT
body usingibmagic, see [7]. We then group these into a handful of categoriexlé¢e
sify downloads of mobile applications as apps, video andcecmhtent as multimedia,
and images as web-browsing since the latter are usuallytegrad part of Web pages.

Fig. 3 shows the HTTP content type categories for MHDs andpaoes them with
all HTTP traffic. We find that multimedia content is the modiwoinous MHD content-
type across all traces followed by application downloadirestinglyXML objects are
also common. They account for 2-5 % of the transfered HTTBsYML is used by
many applications for status and data updates, e.g., wefatieeasts, stock quotes, and
sport results. Surprisingly, Web surfing itself (text basedtent-types and images) is
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Fig. 4. Size of HTTP objects for all traffic and MHD traffic for traeé®R09.

only the third largest category contributing less than 14%he 2009 traces (23% in
SEP08).

Comparing these results to all HTTP traffic [7] we find that dtwvads of mobile ap-
plications and XML contribute a significantly smaller friaet to the content type mix.
In contrast the volume contributed by RAR archives to all iPTifaffic is significantly
larger. Browsing is a bit more prevalentin all HTTP traffi@{22 %). Multimedia con-
tent is the biggest contributor for both. However, for all FH traffic flash-video is the
most popular video codec, while MHDs use MPEG coding.

The volume share per DNS domain reflects the distribution BHEMontent-types.
Apple’sappl e. comis responsible for most of the traffic due to application dmads.
Note, only theAUGO09a trace shows a significant number of iPhone application down-
loads from third-party sites rather than the Apple’s App&t&¥ouTube and Stream.fm
are the next most popular domains. For overall HTTP traffie-@fick-Hosters and
video portals are among the top domains by volume.

To answer the question if MHD HTTP traffic characteristicfedifrom overall
HTTP traffic we compare the distribution of HTTP object siZeése Fig. 4 for a plot of
the Cumulative Complementary Distribution Function (CGRRd Probability Density
Function (PDF) forAPR09%. The results for the other traces are similar. We find that
both distributions are consistent with a heavy-tailedritigtion (see Fig. 4(a)). While
the dominating mode of objects sizes downloaded by MHDggeela(see support lines
in Fig. 4(b)) the tail is heavier for all HTTP traffic.

3.4 Mobile Applications

Fig. 5 shows the popularity of the top MHDs’ applicationseThost popular applica-
tion is Apple’s browser Safari. Up to 62 % of all devices aragst. This is followed
by iTunes (up to 37 %) and Weather (up to 32%). For non-Appleldhive observe

4 Coupled with a logarithmic scale on tkeaxis, plotting the density of the logarithm of the data
facilitates direct comparisons between different parthefgraphs based on the area under the
curve.
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that the browser is also the most popular application. QMerafind that Apple’s de-
fault applications clearly dominate. Surprisingly, giveuar own usage, the popularity
of Maps is relatively low. One possible explanation is thia¢ oarely needs directions
while at home. CoreMedia, the media player of iPhones andsFe also quite preva-
lent. This application is e. g., responsible for playingadd accessed via the YouTube
application or the browser. The YouTube application itselénly used for searching
videos, tagging, and navigating within YouTube. Locatigthe wireless positioning
system used on Apple devices.

To understand if users take advantage of specialized apiplis available for popu-
lar Web services we select two Online Social Networks thepapular in our user base:
Facebook and StudiVZ. For both OSNSs there are specializglitapons available for
the iPhone/iPod MHDs. We find that roughly half of the use3%&+ 10 %) use the
specialized applications while the other half continuesge the built-in browser. This
relationship is stable throughout our 11 month observaiegnod.

3.5 Application and Media Downloads

Given that we are observing traffic from residential DSL $irnvee have the ability to
evaluate if users use their mobile devices or their reqularputer to download mobile
applications and/or multimedia content. Due to the prevadeof Apple devices in our
dataset we now focus on Apple iTunes store and Apple AppStore

We find that applications are predominantly downloadedctliygo the MHD (see
Table 2), e.g., more than 70 % of downloads for the 2009 tré®agrisingly, we see
that for AUG09a and AUG09b the volume of application downloads in terms of bytes
is almost the same for regular computers and MHD, i. e., themagplication size is
larger for applications downloaded by PC/Macs. A detailealygsis reveals that this is
caused by outliers; the median application size is the samigofth.

We see a vastly different behavior for media downloads oclpases from Apple’s
iTunes store. Downloads are almost exclusively done viagbelar computers. We see
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Table 2. Downloads from AppStore

# Apps by PC/Mac by MHD
Trace available | Volume | #Req| Volume | # Req
SEPO08 3,000 <1GB| <100| <1GB | <100
APRO09 7500 <1GB| >100| >2GB | >250

AUGO09a 70,000 >2GB | >150| >3GB | >450
AUG09b 70,000 >3GB | >150| >3GB | >400

several thousand media files being accessed in the 2008 tidowever, only a handful
of downloads are via MHDs which results in a small byte cduottion.

4 Related Work

Only a small number of studies have focused on InternetdraffBG mobile or cel-
lular networks. Svoboda et al. [8] analyze various aspec@RRS and UMTS traffic
using anonymized header traces from 2004 and 2005. They staffic volume per
user and protocol mix. In terms of protocol mix, they find th&tTP is the dominant
protocol with 40-60 % of traffic. Heikkinen et al. [5] analyR@P usage from passive
UMTS header traces in Finland from 2005-2007. Web traffioants for 57—-79 % of
bytes from mobile hand-held devices, email for 10-24 %, a2@ B not noticeable.
Williamson et al. [13] analyze packet/data call event tsaftem a CDMA2000 net-
work from 2004. They focus their analysis on link-layer b&bg session properties,
and user mobility.

Several studies have analyzed TCP performance and lowttefiéc characteris-
tics in GPRS and CDMA data networks [2, 6, 14]. Other studieslyee the content
requested or available for mobile devices. Using data fr@@02 Adya et al. [1] ana-
lyze the Web server logs of a major commercial site and stheyequests of mobile
clients. They find that stock quotes, news, and yellow pagas the most commonly
accessed content in their traces. Timmins et al. [9] useaotieasurements to crawl
the Web for sites offering specialized content for mobileides. Verkasalo [11] stud-
ies how Symbian phone features are used by instrumentinigathéset. He finds that
the camera feature and games are the most common multinmmaliesdions.

Trestian et al. [10] analyzes mobility and web-applicatimage in a 3G network
from a metropolitan area. We on the other hand, focus orostty usage when MHDs
are connected at home via WiFi. Trestian et al. characterét®application usage by
counting the number of HTTP request and find that social nediwg, music, and e-
mail are the most common web. They do not asses who msang utilize a particular
application, which is the approach we use to characteripbcgtion usage.

5 Conclusion

Our analysis of residential broadband DSL lines of a largeofean ISP shows that
there is a significant and increasing number of active MHDes. fid that iPhones
and iPods are by far the most commonly observed MHDs. Thisahampact on the
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most popular mobile applications: Safari (Apple’s broysBmunes, and Weather. The
largest fraction by volume of MHD HTTP content is multimed@omparing HTTP
object sizes of overall and MHD traffic we find that MHD HTTP etfs are on average
larger. The contribution of MHDs to the overall traffic voleris still small, but rapidly
growing, especially compared to the overall traffic growthfuture work we plan a
more detailed analysis of non-HTTP protocols and refine aethodology for protocol
classification. In addition, we plan to extend our analysigraces from cellular data
networks.
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