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Abstract

Pattern Matching is an important task in various applica-
tions, including network traffic analysis and intrusion detec-
tion. In modern high speed gigabit networks it becomes un-
feasible to search for patterns using pure software implemen-
tations, due to the amount of data that must be searched.
Furthermore applications employing pattern matching often
need to search for several patterns at the same time. In
this thesis we explore the possibilities of using FPGAs for
hardware pattern matching. We analyze the applicability
of various pattern matching algorithms for hardware imple-
mentation and implement a Rabin-Karp and an approximate
pattern matching algorithm in Endace’s network measure-
ment cards using VHDL. The implementations are evalu-
ated and compared to pure software matching solutions. To
demonstrate the power of hardware pattern matching, an
example application for traffic accounting using hardware
pattern matching is presented as a proof-of-concept. Since
some systems like network intrusion detection systems an-
alyze reassembled TCP streams, possibilities for hardware
TCP reassembly combined with hardware pattern matching
are discussed as well.
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1 Introduction

The overall goal of this thesis is to explore the possibilities of pattern matching
by means of programmable hardware with respect to high speed network environ-
ments. A strong emphasis is given to security applications, like network intrusion
detection systems (NIDS). This thesis is written in cooperation with Endace [End07]
Technology Ltd. in Hamilton, New Zealand. Endace is a global leader in hardware
acceleration and network interface technology.

1.1 Motivation

Finding patterns in a large dataset is an important field. Internet search engines,
databases, network intrusion detection systems, DNA sequencing, etc. are all exam-
ples where pattern matching is employed.

Network intrusion detection systems like Snort [Roe99] and Bro [Pax99] heavily uti-
lize pattern matching in their operation. Another important question is determining
the application layer protocol spoken within a connection. Internet service providers
are interested in the traffic mix they carry on their links, and intrusion detection
systems use application detection to determine which analyzers should be used on
the connection. Most systems use a set of well-known ports, such as those assigned
by IANA [IANA], or those widely used by convention, to determine the application
layer protocol. If a connection does not use one of the recognized ports, this applica-
tion detection mechanism breaks down. Examples include running a Web server on
a non standard port or using port 80 for non Web applications. Pattern matching
can be employed to identify application layer protocols without using ports.

Pattern matching in network environments is currently done in software. However,
pattern matching algorithms are expensive in terms of CPU utilization, and most
applications need to search for several patterns in parallel. In current high speed
network environments with several gigabit of network traffic, pure software solu-
tions cannot keep up with the full data rate of network links. Another approach
is needed to search for patterns in such environments. On the other hand, pattern
matching algorithms are well suited for implementation in programmable hardware,
like FPGAs. A short descriptions of FPGAs is given in Appendix B. Furthermore
hardware implementations can be parallelized easily. Therefore, hardware imple-
mentations are a possible solution for pattern matching problems in gigabit network
environments.

Hardware Pattern Matching for Network Traffic Analysis in Gigabit Environments



2 1 Introduction

Implementing hardware pattern matching in FPGAs can mean two different things.
The first approach is to implement a generic pattern matcher in hardware and load
this pattern matcher into the FPGA. The patterns to match can then be configured
dynamically without the need to load a complete new FPGA image. The FPGA
is used as a generic pattern match engine. The second approach is to incorporate
the patterns to match into the FPGA logic itself. While the second approach can
achieve higher throughput, reconfiguring the pattern set takes a considerable time.
Furthermore the second approach is only feasible if a dedicated FPGA is available
for pattern matching. If the pattern matching logic shares a FPGA with other logic
only the first approach is feasible, because reloading a FPGA image disrupts the
operation of the other logic. This thesis uses the first approach, a generic pattern
matching engine, where the pattern set can be dynamically reconfigured.

1.2 Related Work

Using FPGAs for hardware pattern matching has been extensively analyzed by sev-
eral researchers. But these works ([SP01], [CS03], [SP03]) all focus on incorporating
the pattern to match into the FPGA fabric itself, rather than implementing a generic
match engine in hardware.

Dreger et al. [DFM+06] presented and evaluated a software approach to use pat-
tern matching for application layer protocol detection for the Bro network intrusion
detection system. Dharmapurikar and Paxson [DP05] have analyzed hardware TCP
stream reassembly for security applications in the presence of adversarial behavior.

Exact pattern matching algorithm is a settled field and most text books on algo-
rithms, like [CSRL01], cover pattern matching in some detail. Approximate pattern
matching research is a bit more active. Navarro [Nav01] summarizes current research
and the state of the art in approximate pattern matching algorithms.

1.3 About Endace DAG Network Monitoring Cards

This thesis is written with the support of Endace Technology Ltd. Endace is a global
leader in hardware acceleration and network interface technology, recognized by an
elite, worldwide client base of major corporations, government agencies and ISPs.
Endace customers operate the world’s largest, fastest and most critical networks.
Endace solutions enable global customers to observe and analyze 100% of the traffic
carried on their networks, guaranteeing security, integrity and performance for their
users and applications, regardless of transmission speed, loading or interface type.

Endace DAG network monitoring interface cards provide 100% packet or cell cap-
ture, regardless of interface type, packet size, or network loading. On top of this
zero-loss performance, Endace DAG cards offload the data load workload from the
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CPU, allowing software applications to inspect and process traffic at much higher
speed.

More recent DAG cards also provide hardware-based traffic filtering, data stream
replication, and CPU load balancing functions. These effectively accelerate appli-
cation performance, enabling Network Managers to be confident that every packet
has been inspected and reported on, and that nothing has been missed.

1.4 Outline of this Thesis

Chapter 2 describes currently known pattern matching algorithms and then selects
two algorithms for implementation in hardware. Chapters 3 and 4 deal with the
design and implementation of the selected algorithms in hardware. In Chapter 5
both implementations are evaluated. Chapter 6 describes an example application for
hardware pattern matching— the detection of application layer protocols in network
traffic using pattern matching. Chapter 7 is dedicated to an initial design of a
TCP stream reassembler, that can match complete TCP streams and not just single
packets. Finally in Chapter 8 an outlook on future developments and enhancements
for hardware pattern matching is given.

Hardware Pattern Matching for Network Traffic Analysis in Gigabit Environments



4 2 Pattern Matching Algorithms

2 Pattern Matching Algorithms

Finding all occurrences of a pattern in a text is a problem that arises often. Word
processors, search engines, databases, etc. all have to deal with the problem of find-
ing a pattern in a large text. This chapter gives an overview of pattern matching
algorithms. First exact pattern matching algorithms are discussed, then an approx-
imate pattern matching algorithm is presented and finally algorithms for hardware
implementation are selected.

2.1 Exact Pattern Matching Algorithms

Exact pattern matching algorithms find exact occurrences of a pattern in a text.
Let p, x be two strings over a finite alphabet Σ, with p = p1 . . . pm and x = x1 . . . xn.
The pattern p occurs in text x if there exists a shift s so that 1 ≤ s ≤ n −m − 1
and xs . . . xs−1+m = p. The pattern matching problem is the problem of finding all
valid shifts resp. of determining if a valid shift for pattern p and text x exists.

The naive approach to pattern matching checks at every text position s = 1 . . . n−
m − 1 if xs . . . xs−1+m = p by comparing character by character and thus requires
O(m · n) steps. The more sophisticated algorithms presented in the next sections
all do some preprocessing based on the pattern and are able to reduce the running
time for pattern matching. A good overview of exact pattern matching algorithms
can be found in [CSRL01].

2.1.1 Knuth-Morris-Pratt Algorithm

The Knuth-Morris-Pratt algorithm [KMP77] can solve the pattern matching in linear
time by preprocessing the pattern. A quick explanation of the algorithm is presented
in Wikipedia [Wik07c]. Cormen et al. [CSRL01] present the algorithm too and proof
its running time and its correctness.

Consider the following example, were p is the pattern and x is the text to search.
Furthermore we keep two variables, s, which donates a possible valid shift and i, an
offset into the pattern. Both are initially set to 1.

12345678901234567890123
x: ABC ABCDAB ABCDABCDABDE
p: ABCDABD

1234567
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2.1 Exact Pattern Matching Algorithms 5

Text and pattern characters are compared and at position 4 a mismatch occurs.
The naive algorithm would now continue at text position 1. However, since no A
occurred in the text between positions 1 and 4, the next possibility for a match is at
position 5. Therefore the algorithm sets s← 5, i← 1 and continues the search.

12345678901234567890123
x: ABC ABCDAB ABCDABCDABDE
p: ABCDABD

1234567

The next couple of characters match but at text position 11 the text and pattern
characters mismatch again. This time however positions 9 and 10 in the text are
a valid prefix of the pattern. The algorithm sets s ← 9 and i ← 3. Since the
algorithm already knows that AB at position 9 in the text is a prefix of the pattern,
the algorithm can continue by comparing x11 and p3.

12345678901234567890123
x: ABC ABCDAB ABCDABCDABDE
p: ABCDABD

1234567

We observe, that every text character is compared only once, therefore the running
time of the actual search is O(n). During the preprocessing phase, the pattern is
analyzed and a prefix table is calculated. This prefix table is used during the search
phase to determine the appropriate values of s and i. Preprocessing takes O(m)
time, therefore the algorithm has an overall running time of O(m + n).

2.1.2 Boyer-Moore Algorithm

The Boyer-Moore algorithm was developed by Bob Boyer and J. Strother Moore
in [BM77]. The algorithm can achieve a best case running time of O(n/m) by
preprocessing the pattern. The average case running time is O(n), but as opposed
to the Knuth-Morris-Pratt algorithm, Boyer-Moore has a worst case running time
of O(m · n).

The idea of the Boyer-Moore Algorithm is to skip parts of the text, that cannot
match the pattern. At the beginning of the search phase the pattern is left-aligned
with the text. The algorithm starts the comparison between text and pattern from
right to left by checking if xm = pm. If the characters match, the algorithm continues
from right to left with xm−1 = pm−1. If a mismatch occurs, two heuristics calculate
how far the pattern can be moved to the right, thus skipping over some text positions
that cannot yield a match.

Hardware Pattern Matching for Network Traffic Analysis in Gigabit Environments



6 2 Pattern Matching Algorithms

The first heuristic is the Bad-Character-Heuristic. If a mismatch occurs, the “bad”
text character xb, is searched in the pattern. The pattern is then moved to the right
until the last occurrence of the bad character in the pattern is at position b. If the
bad character does not occur at all, the pattern is moved its whole length to the
right.

The second heuristic is the Good-Suffix-Heuristic. If a mismatch occurs while com-
paring the pattern with the text from right to left and the mismatch is at pattern
position i, i 6= m, a suffix of the pattern pi . . . pm must match, otherwise a mismatch
would have occurred earlier. In this case, the pattern is moved to the right until a
part word of the pattern matches the suffix again. If no such part word exists, the
pattern is moved its whole length to the right.

If the heuristics disagree, the maximum of both is used to move the pattern. A sim-
plified version of this algorithm, the Boyer-Moore-Horspool algorithm, uses only the
first heuristic. To achieve a good run time behavior the heuristics are precomputed
in an initial preprocessing phase. The Wikipedia [Wik07a] shows an example and
pseudo code for the Boyer-Moore algorithm.

2.1.3 Rabin-Karp Algorithm

The Rabin-Karp algorithm was presented by Richard Karp and Michael Rabin in
[KR87]. The algorithm achieves an average case running time of O(m + n) by using
hashing. The worst case running time is still O(m · n) however. The Rabin-Karp
algorithm exploits the fact that if two strings are equal, their hash values are also
equal. But since two hash values can be equal even if the underlying strings differ, the
algorithm has to verify every match of hash values. In a preprocessing phase the hash
value of the pattern p is calculated. Then for every text position s = 1 . . . n−m− 1
the hash value of xs . . . xs−1+m is compared to the hash value of the pattern. If the
hash values match, the pattern is compared to the text at position s to verify that
there is indeed a match at this position. The crucial point is the calculation of the
hash values of the text. If the complete hash value has to be recalculated for every
text position the running time of the algorithm would be the same as the running
time of the naive approach. A rolling hash function is therefore employed. A rolling
hash function can compute the hash value of xs . . . xs−1+m in constant time from
the characters xs−1, xs−1+m, and the previous hash value, xs−1 . . . xs−2+m.

Another advantage of the Rabin-Karp algorithms is the fact that it can be used
to efficiently search for multiple patterns in a text. In the preprocessing phase all
patterns are hashed. Then the algorithm checks for every text position if the current
text hash value matches any of the pattern hashes. It must be noted however, that
the hash value depends on the length of pattern, therefore a separate text hash must
be calculated for every pattern length that should be matched.

Hardware Pattern Matching for Network Traffic Analysis in Gigabit Environments
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2.2 Approximate Pattern Matching Algorithms

A problem in network monitoring is dealing with deviations or errors in the data
stream. Bit errors might have been introduced into the data or an attacker might
have inserted a backspace to obscure the pattern of the attack. Other areas were
deviations and errors of data occur are finding a pattern in the presence of typing
or spelling errors or searching for DNA sequences. The goal of approximate pattern
matching is to match patterns in a text where the pattern and/or the text contain a
limited number of such deviations. A good overview of approximate pattern match-
ing algorithms and current developments in this area can be found in [Nav01].

In order to decide if a pattern is contained in a text with a limited number of errors,
a metric for measuring errors must be employed. The most common metric is the
edit distance [Lev66]. The edit distance between two strings is the minimum number
of insertions, deletion, and substitutions of single characters required to translate
the first string into the second string. A separate cost could be assigned to each
operation (insert, delete, substitute) but for most purposes a uniform cost of 1 per
operation is sufficient.

Sellers [Sel80] introduced the first algorithm for this problem which uses dynamic
programming. The general principle of this algorithm is still used in current im-
plementations although various improvements have been suggested to increase the
algorithm’s performance. In the following the algorithm to calculate the edit dis-
tance between two strings is presented. This algorithm will then be used to construct
an approximate pattern matching algorithm.

2.2.1 Calculating the Edit Distance

Let p, x be two strings, with p = p1 . . . pm and x = x1 . . . xn. The algorithm computes
a (m + 1) × (n + 1) matrix C, where Ci,j corresponds to the minimum number of
edit steps to transform p1...i to x1...j . The matrix cells are recursively defined as

Ci,0 = i
C0,j = j

Ci,j =
{

Ci−1,j−1 if pi = xj

1 + min (Ci−1,j , Ci,j−1, Ci−1,j−1) else

for all i ∈ 0 . . .m and j ∈ 0 . . . n. After the matrix has been evaluated the last cell
Cm,n = ed(p, x), with ed(p, x) being the edit distance between p and x.

Induction basis: The value of Ci,0 is the edit distance between the string p1...i and
the empty string, Cj,0 is the edit distance between x1...j and the empty string. To
transform p1...i to the empty string, i deletions are required.

Hardware Pattern Matching for Network Traffic Analysis in Gigabit Environments



8 2 Pattern Matching Algorithms

h a l l w a y s
0 1 2 3 4 5 6 7 8

h 1 0 1 2 3 4 5 6 7
a 2 1 0 1 2 3 4 5 6
l 3 2 1 0 1 2 3 4 5
f 4 3 2 1 1 2 3 4 5
w 5 4 3 2 2 1 2 3 4
a 6 5 4 3 3 2 1 2 3
y 7 6 5 4 4 3 2 1 2

Figure 2.1: Edit distance matrix between “hallways” and “halfway”

Induction step: Assume that for two none empty strings of lengths i and j all
edit distances for their prefix strings have already been computed. The goal is to
transform p1...i to x1...j . If the characters pi and xj are equal, the edit distance is
the same as for p1...i−1 to x1...j−1. If pi and xj differ, there are three possibilities:

• pi can be deleted. The resulting edit distance is thus 1 plus the edit distance
between p1...i−1 and x1...j .

• xj can be inserted at the end of p1...i, resulting in an edit distance of 1 plus
the edit distance between p1...i and x1...j−1.

• pi can be substituted with xj , resulting in an edit distance of 1 plus p1...i−1

and x1...j−1.

The min (Ci−1,j , Ci,j−1, Ci−1,j−1) term in the above formula selects the operation
that leads to the smallest edit distance.

The matrix can be computed row-wise or column-wise. Figure 2.1 shows the edit
distance matrix between ”hallways” and ”halfway”. The runtime of the algorithm
is O(mn), but the space requirement is only O(min(m,n)). At any point, only the
last column (resp. the last row) must be stored to calculate the new column (row).
It is also possible to extract the sequence of operations used to transform p to x by
traversing the matrix from Cm,n to C0,0 while writing down the operations. Multiple
such paths may exist.

Ukkonen [Ukk85] pointed out some interesting properties of the above matrix, that
allow algorithms that are more efficient. In particular he showed that neighbor cells
differ by at most 1. He also analyzed the data dependencies between cells. Indeed
he showed that it is possible to evaluate the matrix diagonal-wise (either primary
or secondary diagonals).

Hardware Pattern Matching for Network Traffic Analysis in Gigabit Environments



2.2 Approximate Pattern Matching Algorithms 9

h a l l w a y s
0 0 0 0 0 0 0 0 0

h 1 0 1 1 1 1 1 1 1
a 2 1 0 1 2 2 1 2 2
l 3 2 1 0 1 2 2 2 3
f 4 3 2 1 1 2 3 3 3
w 5 4 3 2 2 1 2 3 4
a 6 5 4 3 3 2 1 2 3
y 7 6 5 4 4 3 2 1 2

Figure 2.2: Finding “halfway” in “hallways” with two errors

2.2.2 Finding Approximate Matches

The approximate pattern matching algorithm is basically the same. Only the fact
that a match can start at any text position must be accounted for. This is achieved
by setting C0,j = 0, for all j ∈ 0 . . . n. I.e., the empty pattern matches with zero
errors an any text position. The text is processed character by character and for
each character xj the according column of the matrix is calculated. A match is
found at text position j if Cm,j < k, where k is the maximum number of errors
allowed. Figure 2.2 shows the matrix when searching for the pattern “halfway” in
the text “hallways”. Italic entries are the positions were a match with less than 2
errors was found. Over the years various improvements to this algorithm have been
developed. Most of these exploit properties of the dynamic programming matrix.

Another approach for solving the approximate pattern matching problem is using
automatons, where each specifity of a column represents a separate state of the
automaton. In this case, state transitions occur on every character of the text,
i.e., when a new column is computed. All these improvements achieve increased
performance by trading memory for runtime. Navarro [Nav01] summarizes these
improvements.

2.2.3 Limited Expressions

An interesting extension to the algorithm allows to match limited expressions with
errors. A limited expression is similar to a regular expression, but without the
variable length modifiers (∗,+, {}). Therefore, character classes (e.g., [0 − 9], [a −
fA− F ]) and simple wildcards (.) can be specified in limited expressions. This also
implies that a limited expression pattern always has a clearly defined length.

In order to use limited expressions, the comparison pi = xj is replaced with a table
lookup. A separate table for every byte of the pattern is required. The tables contain
one entry per character, i.e., 256 entries for ASCII. A table entry is a boolean value

Hardware Pattern Matching for Network Traffic Analysis in Gigabit Environments



10 2 Pattern Matching Algorithms

which determines if the associated character matched. To compare pi to xj , the
character xj is looked up in the table for pattern byte i by using xj as index into
the table. If the lookup yields true, the character xj matches the position i of
the pattern (either the characters are the same or a wildcard or character class at
position i matched). No other changes to the algorithm are required.

2.3 Selecting Algorithms for Hardware Implementation

The goal of this thesis is to identify an algorithm and an implementation that can
keep up with the full data rate of the network link, regardless of the burstiness of
the traffic, the size distribution of packets, or any other factors.

The length, n, of the text to search is normally the largest factor that determines
the runtime of a pattern matching algorithm. A software solution would pick an
algorithm that minimizes the impact of the text length n on the runtime. However
for the application targeted in this thesis, doing hardware based pattern matching on
online network traffic, dependencies on the text length (i.e., the volume of network
traffic) are not important. The network traffic flows through the match engine in
real time, so the important factor is the amount of work per byte of network traffic.
After all the hardware must be able to keep up with the speed of the network.

Another key criteria is how easily one can parallelize the algorithm. Most appli-
cations are searching for several patterns at the same time, therefore a hardware
pattern matcher must be able do to so.

The final important criteria is the amount of memory required for a matcher. On-
chip memory on FPGAs is very limited, only a couple of KB are available, therefore
an algorithm should not require much memory. Furthermore dynamically allocating
memory is a hard task in hardware, so ideally an algorithm for hardware implemen-
tation should only use a predefined, fixed amount of memory.

The Rabin-Karp algorithm has been selected, because it is able to handle large
numbers of patters and lends itself to be parallelized. The rolling hash can be
implemented easily in hardware and the comparison of the current text hash with
the pattern hashes can be achieved by CAM like lookup tables. The number of
patterns that can be matched in parallel is only limited by the size of the lookup
table. The Rabin-Karp algorithm can be used to match hundreds of patterns in
parallel.

The hardware matcher will report a possible match whenever the pattern hash and
the current text hash match. A software application must then verify if the reported
match is indeed a real match or if it is a false positive. As long as the number of false
positives is low, the software is able to verify all reported matches and keep up with
the data rate. Implementing the verification in hardware is in principle possible.

Hardware Pattern Matching for Network Traffic Analysis in Gigabit Environments



2.3 Selecting Algorithms for Hardware Implementation 11

But it would not be possible to give performance guarantees, since in worst case
every text byte can result in a match that must be verified.

The advantage of the Rabin-Karp algorithm is that it can match a vast number of
patterns in parallel. It has the disadvantage that some applications, like NIDSes,
have to match patterns with wildcards and they may also want to account for errors
in patterns. E.g., to prevent evasion attacks, when attackers insert characters to
confuse pattern matching algorithms. Rabin-Karp can only match exact patterns
without wildcards or errors. Approximate pattern matching with limited expres-
sions enables such sophisticated matches, but the approximate pattern matching
algorithm cannot be parallelized as well as Rabin-Karp, therefore the number of
patterns that can be matched in parallel is much smaller.

The other classical pattern matching algorithms, Boyer-Moore and Knuth-Morris-
Pratt cannot be parallelized as easily as Rabin-Karp. A separate matching unit
would be required for every pattern, thus limiting the number of patterns that
can be handled. Furthermore implementing an approximate pattern matcher does
not require significantly more resources than implementing Boyer-Moore or Knuth-
Morris-Pratt.

Since there is no algorithm that can achieve everything, both, the Rabin-Karp and
an approximate pattern matching algorithm have been implemented. This gives
applications the choice of an appropriate matcher for their specific needs.

Hardware Pattern Matching for Network Traffic Analysis in Gigabit Environments



12 3 Design and Implementation of the Rabin-Karp Algorithm

3 Design and Implementation of the Rabin-Karp Algorithm

In this chapter the design and implementation of the Rabin-Karp algorithm is de-
scribed. After an introduction, the hash function to use will be selected, the implica-
tion of using wide data paths is discussed, the hash lookup mechanism is described
and finally the actual hardware implementation is presented.

The hardware based Rabin-Karp pattern matcher enables a software application
to match a larger number of patterns at line rate. For example the Snort [Roe99]
intrusion detection system uses several hundred patterns to search network traffic
for attack patterns. The Rabin-Karp matcher is able to speed up such applications
by offloading the pattern matching onto hardware. The application software, e.g.,
Snort, loads the patterns into the DAG cards. It is possible to modify the set of
patterns in the card while capturing is in progress, although packets are not matched
while the pattern set is being changed.

The pattern matcher can mark packets containing matches by overwriting parts of
the ERF [End04] header. It can also discard packets. The application software
can configure whether packets should be marked and/or discarded and if discarding
is enabled, the software can configure if matched or unmatched packets shall be
discarded. The mark contains the information which pattern lengths had a match,
not the actual pattern that had a match. When the software receives a network
packet that is marked, it can run a software based pattern matcher on the packet
to decide if the mark is a false positive and also to decide which pattern matched.
Snort for example does not match all patterns in all packets. The patterns that
are matched against a packet depend on the IP addresses and port numbers and on
the position of the packet in the connection. E.g., some patterns must occur at the
beginning of a connection in order to match. Using this premises, the verification
time can be reduced, since the application software only has to verify a match if it
occurred in an appropriate packet.

3.1 Design Overview

The general principle is that for every byte of network data (respectively in every
clock cycle), the new hash value is calculated and this hash value is then looked up
in a table containing the hash values of all patterns. If the hash is found in the table,
the pattern is a possible match. If marking packets is enabled, the appropriate mark
information is written into the ERF header. False positives can occur due to hash
collisions.
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Since the hash function and the hash value depend on the length of the pattern, a
separate hash calculator and a separate lookup table per pattern length is required.

3.2 Selecting a Hash Function

The hash function must be easy and fast to calculate. Furthermore an ideal hash
function should be a rolling hash, i.e., a new hash value can be computed by using
the old hash value, the current byte of packet data, and the byte of packet data seen
“pattern length” byte before. The xor operation (⊕) is a suitable function for this
purpose. The hash value can then be calculated as

hash← hash⊕ packet[curidx]⊕ packet[curidx− patternlen]

where packet is the packet data, curidx is the current position within the packet,
and patternlen is the length of the current pattern.

Using the packet byte directly however, will lead to a lot of collisions and false
positives. To increase the entropy the current byte is used as an index into a table
containing 256 randomly generated and uniformly distributed 32 bit values. The
xor is then calculated using these derived 32 bit values. The lookup table can be
implemented using dual port BlockRAM, in a 32bit×512 entries configuration. The
lookup In the following the lookup operation is denoted as ht[x].

Just xoring the 32 bit values still leads to a large number of false positives. The
problem is that x ⊕ x is always 0. This is a problem for odd and even pattern
lengths. For an even pattern length, the total hash of a pattern may become 0. For
an odd pattern length it may become 0⊕ht[x], i.e., the hash may be reduced to the
value of just one byte.

One solution is to rotate some of the 32 bit input “bytes” before xoring them. The
disadvantage that arises now is, that the hash function is no longer a completely
rolling hash, since some of the 32 bit values are rotated. Tests showed that rotating
only the first seven input “bytes” gives us a good trade-off between performance of
the hash function and number of false positives. The formula to calculate the new
hash value thus becomes:

hash← ror(ht[packet[curidx]], sh1)
⊕ror(ht[packet[curidx− 1]], sh2)
⊕ . . .⊕ ror(ht[packet[curidx− 7]], sh7)
⊕ht[packet[curidx− 8]]
⊕ . . .⊕ ht[packet[curidx− patternlen]

where ror is bit rotate right and sh1 . . . sh7 are the numbers of bits the values are
rotated. The numbers of bits to rotate are chosen randomly. The values should not
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be multiples of each other. For example, shift values of 4, 8, 12, 16, etc. are a bad
choice. To calculate the value of ht[packet[curidx − 8]] ⊕ . . . ⊕ ht[packet[curidx −
patternlen]] the rolling hash approach can be used.

3.3 Using Wide Datapaths

DAG network monitoring cards do not process network packets byte-wise. They use
a wide datapath of several bytes to increase throughput. Therefore the hardware
pattern matcher must be able to process several bytes in every clock cycle. This
implies, that there are several bytes in every cycle where a match for a pattern can
start and the pattern matcher must therefore be able to calculate several hashes per
pattern length and cycle, each one starting at a different byte of the current input
word.

3.4 Hash Lookups

The lookup table can be implemented using a CAM. On a 32 bit datapath 4 lookups
per cycle and pattern length are required, therefore 4 CAMs are be required per pat-
tern length. This CAM must be implemented completely inside the FPGA, since no
external CAM resources are available. The Xilinx CoreGen tool can generate 32 bit
wide CAMs with 32 entries, but such a CAM requires 4 BlockRAMs. Furthermore
these CAMs only provide one search port. Therefore 16 BlockRAMs per pattern
length are required. This is way too much, since the FPGAs used only feature a
total of 100 to 200 BlockRAMs and a significant number of these are already used
for other components of the DAG card.

To overcome this constraint a fuzzy CAM has been developed. The fuzzy CAM
exploits the fact that false positives are acceptable and that all CAMs needed for
one pattern length contain the same data. Furthermore a real CAM returns the
location of the entry, a fuzzy CAM on the other hand will only indicate if the search
term was found in the CAM or not, but not where it was found. This means that the
pattern matcher will not be able to determine which pattern matched, it will only
be able to determine that a pattern matched. Since the application software has to
verify matches anyway and since this restriction yields a CAM that uses much less
BlockRAMs, the restriction is an acceptable trade-off.

A design in which the hardware matcher can inform the software application exactly
which pattern had a potential match would be possible however. If a fuzzy CAM
detects a match, the 32 bit hash value that resulted in the match could be included
in the ERF header, so that the application software can analyze it. However this
requires additional bandwidth, since the pattern matcher must insert the hash values
into the data stream. Furthermore many hash values are looked up every cycle

Hardware Pattern Matching for Network Traffic Analysis in Gigabit Environments



3.5 Hardware Implementation 15

(datapath width in bytes × number of pattern lengths) and each of those can result
in a match. If more than one such match occurs in one clock cycle, an arbiter
and queues are be required to be able to include all matches in the ERF header.
Implementing an arbiter in hardware is complex and requires a significant amount
of logic resources. Since the downsides of such a design outweigh potential gain, the
hash values are not included in the ERF header.

As mentioned in Section 2.3, the match verification is not done in hardware. If match
verification would be employed, the implementation could not guarantee line rate
matching anymore. Furthermore match verification can be done easily in software,
as long as the hashing does only yield a small number of false positives.

3.5 Hardware Implementation

Two DAG network monitoring cards were chosen as target system for the Rabin-
Karp implementation,

• DAG 4.5, gigabit ethernet card, with a Xilinx VirtexII Pro 30 FPGA. This
FPGA contains approximately 13700 slices and 136 BlockRAMs, so a total of
27400 LUTs and 27400 Flip Flops are available. A description of the internal
architecture of FPGAs is available at [Wik07b] and a short introduction is
presented in Appendix B.

• DAG 8.2X, 10 gigabit ethernet card, with a Virtex4 SX35. This FPGA con-
tains approximately 15400 slices and 192 BlockRAMs.

The number of different pattern length that the pattern matcher can handle is only
limited by the available resources in the FPGA, especially the number of available
BlockRAMs is the major bottleneck. For both cards a number of 6 different pattern
lengths was found to be feasible. Which length are used is arbitrary. For the current
implementation pattern length of 4, 5, 6, 7, 8, and 9 bytes were chosen, since most
patterns used by systems like Snort are rather short and longer patterns can be
truncated. There is no technical limit to the maximum pattern length.

The implementation of the Rabin-Karp pattern matcher has been tested and used on
datapaths up to 64 bit wide with a maximum maximum clock frequency of 200MHz.
Since the pattern matcher can process one input word every clock cycle, a maximum
bandwidth of 12.8Gbit/s can be achieved.
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4 Design and Implementation of an Approximate Pattern
Matcher

This chapter covers the design and implementation of an approximate pattern matcher.
After an introduction, the comparison of pattern and packet data is described, then
the approach to calculate the edit distance matrix and the encoding used to represent
the values in the matrix are discussed. Finally the actual hardware implementation
is presented.

The hardware based approximate pattern matcher enables a software application
to match up to 24 different limited expression (see Section 2.2.3) at line rate. Fur-
thermore it can match patterns that contain a defined number of deviations. For
example the Bro [Pax99] IDS uses regular expression patterns for its analysis. Al-
though limited expressions are only a subset of regular expressions, the approximate
pattern matcher can be configured with patterns that match a superset of the regular
expressions used by Bro. If a match is report by the hardware matcher, the Bro sys-
tem can then run a software based regular expression matcher to verify if the match
reported by hardware is indeed a match for the regular expression. Thus the ap-
proximate hardware pattern matcher can greatly enhance the system’s performance
by reducing the number of packets Bro has to analyze.

The application software loads the patterns to match into the card and specifies the
maximum number of deviations allowed for each pattern. The patterns loaded can
be modified during a capture session, although the pattern that is modified will be
disabled while the reprogramming is in progress. I.e., this pattern will not match
any packet during this time. However the other patterns are not affected by the
reconfigure operation.

Similar to the Rabin-Karp matcher, packets containing matches can be marked by
overwriting parts of the ERF [End04] header. The mark contains the information
which pattern matched.

4.1 Comparing the Pattern and Packet Bytes

In order to utilize limited expression matching, packet bytes are presented to a
lookup table instead of comparing them directly to the pattern. As pointed out
in Section 2.2.3, one lookup table is required for every byte of the pattern. Every
lookup table yields a boolean result and all lookups for the current packet byte must
be processed in one clock cycle. I.e., xi must be compared to all pattern bytes j,
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j ∈ 1 . . .m during one clock cycle. Where xi is the current byte of packet data and
m is the length of the pattern. These m lookups can be combined, since the index
used for all these lookups is the byte xi. The lookup yields a m bit value, where bit
j corresponds to the comparison of xi to pj . These tables are implemented using
Xilinx BlockRAMs.

4.2 Computing the Edit Distance Matrix

Computing the edit distance matrix C column-wise is not feasible, because the last
row of each column depends on every other cell in this column. For implementation
in DAG cards, with their several byte datapaths one new column per datapath byte
would have to be computed every cycle, and the cell in the last row and column
depends on all other cells. For a pattern length of 16 bytes, more than a 100 cells
can influence the value of this last cell. It is impossible to compute all these values
in one clock cycle.

Figure 4.1: Data dependencies when evaluating the edit distance matrix secondary-
diagonal wise

Ukkonen [Ukk85] analyzed the dependencies involved in the computation of the edit
distance matrix. This leads to an evaluation strategy, where the matrix is computed
secondary-diagonal wise. With this computation strategy, the values in the new
diagonal only depend on values, that have been calculated in the two previous cycles.
Figure 4.1 illustrates this. Dark-gray cells denote the diagonal that is going to be
calculated and the arrows indicate the cells (colored light-gray) that influence these
new cells. Of course, on wide datapaths more dependencies exist. Several input
bytes have to be handled in one clock cycle. But the number of data dependencies is
now small enough that the new diagonals can be computed in one clock cycle even
for a 32 bit datapath. Still there are too many dependencies for wider datapaths.

Computing the distance matrix secondary-diagonal wise has a small disadvantage.
The value in the last cell Cm,n is only available m cycles after the last byte of data
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has been processed. This must be taken into account when implementing the control
logic for the pattern matcher.

4.3 Encoding the Cells of the Edit Distance Matrix

Another issue is the term 1+min (Ci−1,j , Ci,j−1, Ci−1,j−1). Calculating the minimum
involves comparing and therefore subtracting the values from each other. Subtrac-
tions are an expensive operation due to the carry logic involved. Storing the cells of
the edit distance matrix as ordinary binary numbers and using binary arithmetic to
calculate the minimum and for doing the +1 addition is therefore suboptimal.

In the approximate pattern matcher implementation a faster method is used. A bit
field is used to encode the numbers in the matrix. To represent a zero, all bits are
set to ’0’, the number of bits set to ’1’ at the right end of the bit field indicate the
current value of the edit distance. E.g., 00011 represents two, 00111 three. This
implies that there is one and only one transition from 0 to 1 when examining the
bit field from left to right.

Calculating the minimum of a any number of values is now easy. The bitwise and of
all values corresponds to the minimum — it has only those bits set to ‘1’ that are ‘1’
in every comparand. Adding 1 to the value is easy too. The value is shifted to the
left and a ‘1’ is shifted in. Bitwise and and shifts are fast operations in hardware.

Determining if an edit distance is smaller than the maximum allowed is easy too.
The maximum is encoded the same way as the edit distance and then the one’s
complement of it is stored. The edit distance and the maximum are anded. If the
result is all ’0’ the edit distance is lower or equal than the maximum and a match has
been found. Consider the following example. The maximum allowed edit distance is
2, which translates to 00011, respectively 11100 after the one’s complement. If the
calculated edit distance is 3 (00111) the and product is 00100, which indicates that
there were too many errors. If the calculated edit distance is 2 (00011) however, the
and product is 00000, which indicates that the pattern matched with at most two
errors.

4.4 Hardware Implementation

Unfortunately the approximate pattern matcher cannot be parallelized easily. The
only way to match several patterns in parallel is to have multiple match units each
of which uses a considerable amount of FPGA resources.

Two DAG network monitoring cards were used to implement the approximate pat-
tern matcher:
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• DAG CoProcessor expansion card, usable with DAG 4.3 cards. The CoProces-
sor card has a Xilinx VirtexII 2000 FPGA. This FPGA contains about 10750
slices and 56 BlockRAMs, so about 21500 LUTs and 21500 Flip Flops are
available.

• DAG 4.5, gigabit ethernet card, with a Xilinx VirtexII Pro 30 FPGA. See
Section 3.5 for the available logic resources on this FPGA.

A trade-off has to be made between resource requirements per matcher and maxi-
mum pattern length and maximum number of allowed errors. The amount of logic
resources required scales with the product of both parameters. The maximum pat-
tern length was defined as 16 bytes and the maximum number of errors as 4. The
actual number of errors per pattern is still user configurable. Most patterns used
by Bro for dynamic protocol detection and botnet detection [DFM+06] are shorter
than 16 bytes. Patterns longer than 16 bytes can be truncated to 16 bytes. The
maximum number of errors per pattern is defined as 4, because that is a fourth of
the maximum pattern length.

The number of parallel pattern matchers is limited by the available hardware re-
sources. On the CoProcessor card almost the complete FPGA can be used to im-
plement pattern matchers, allowing the placement of 24 parallel match units.

The approximate pattern matcher implementation can handle a 32 bit wide datapath
with a maximum clock frequency of 200 MHz. Since the pattern matcher can match
at full data rate, a bandwidth of 6.4 Gbit/s can be achieved.

Hardware Pattern Matching for Network Traffic Analysis in Gigabit Environments



20 5 Evaluating the Hardware Pattern Matcher

5 Evaluating the Hardware Pattern Matcher

In this chapter the Rabin-Karp and approximate pattern matching hardware imple-
mentations are evaluated. Since the Rabin-Karp matcher only compares the hash
values but does not verify the results, it is important to know how this match ver-
ification will affect an application software utilizing the Rabin-Karp matcher. Fur-
thermore it is interesting to know how a pure software implementation compares to
out hardware implementation. Another question is which throughput is achievable
by pure software solutions? To quantify these figures, software only implementa-
tions for the Rabin-Karp and the approximate pattern matcher are used and their
runtime is analyzed.

5.1 Rabin-Karp

To evaluate the performance of the Rabin-Karp pattern matcher, test patterns are
extracted from the Snort [Roe99] intrusion detection system. This extraction yields
about 1800 patterns. The Rabin-Karp has support for 6 different pattern lengths,
4, 5, 6, 7, 8, and 9 bytes. Snort patterns that are longer than the maximum pattern
length of 9 bytes are truncated to one of the supported lengths.

All tests are done in software, since evaluation of the match and false positive rates
require software verification anyway. Furthermore simulating hardware behavior
in software allows us to verify the actual hardware implementation. The speed
comparison has to be done in software anyway. The tests are done with 50 patterns
per length and with 250 patterns per length, i.e., the total number of patterns for
the tests are 300, resp. 1500 patterns. These numbers where chosen to determine
the influence of the number of patterns on the false positive rate. Furthermore 1500
is used as upper limit to reduce the runtime of the tests. These 300, resp. 1500
patterns are selected randomly from the extracted patterns. Furthermore several
sets of patterns are used for the tests with 300 patterns, each set selected from the
Snort patterns.

The data on which the pattern matching is applied is a full network trace, including
all packet payloads. The trace was collected in 2001 at Auckland University. It
contains approximately 23 GB of data in 50.8 million packets. About 19 GB of the
trace file is application layer payload data.

All tests were repeated multiple times to rule out deviations and measurement er-
rors.
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set num base match real match FP to total FP to real

1500 Pkts 22.5% 21.8% 0.71% 3.24%
A 300 Pkts 3.9% 3.9% 0.01% 0.31%
B 300 Pkts 5.6% 5.5% 0.12% 2.18%
C 300 Pkts 11.0% 11.0% 0.01% 0.13%
D 300 Pkts 6.5% 6.4% 0.01% 0.20%

1500 Bytes 40.0% 38.2% 1.81% 4.75%
A 300 Bytes 8.8% 8.8% 0.03% 0.35%
B 300 Bytes 13.2% 13.0% 0.15% 1.18%
C 300 Bytes 20.0% 19.9% 0.04% 0.18%
D 300 Bytes 13.4% 13.4% 0.03% 0.20%

Figure 5.1: Match and false positive (FP) rates for Rabin-Karp

5.1.1 Match and False Positive Rate

The Rabin-Karp implementation will generate false positive matches. Therefore
software applications utilizing the hardware matching must verify every reported
match. It is import to know how many packets match, i.e., how many packets must
be verified in software. Furthermore the number of false positives is also important
to determine the overhead incurred due to false positives.

Figure 5.1 shows the match and false positive rates. Match and false positive rate
are noted in percent of total number of packets and in percent of the number of
bytes. The number of bytes used is based on IP volume, as specified by the IP total
length header field of IP packets. Link layer headers have been omitted from these
numbers.

The set column denotes the pattern set used, num the number of patterns, and base
specifies whether the figures are based on packets or bytes. match is the rate of
packets, resp. bytes matched by the hardware matcher in percent and real match
is the match rate after software verification, i.e., the true number of matches. The
false positive rates are calculated against the total number of packets resp. bytes
processed (column FP to total) and against the number of packets resp. bytes of
real matches (column FP to real).

The rate of false positives is low. Less than 2% of the total traffic (5% of matched
traffic) were falsely matched. When searching for only 300 patterns these rates drop
to 1% or less.

It can be seen that even when searching for 1500 patterns, about 60% of the traffic
volume does not result in a match, i.e., a software application like Snort has to verify
only the remaining 40% of traffic. These numbers drop significantly to just 13% to
20% when looking for only 300 patterns. It can also be seen, that these match rates
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depend heavily on the selected patterns. Pattern set C has a match rate twice as
high as the other sets and set B has a much higher false positive rate. As expected,
the match rates on a byte basis are much higher, since larger packets are more likely
to result in a match.

5.1.2 Speed Comparison

In order to quantify the performance gained by using a hardware matcher, the time
required to do the matching in software is analyzed. The software matcher is run
with and without verification to quantify the time needed for match verification. It
must be noted however, that the software matcher uses a different hash function
than the hardware matcher. Therefore the number of false positives may differ and
the time needed for verification may differ between hardware and software imple-
mentations.

No free Rabin-Karp library could be found, therefore the tests were done using
a self written Rabin-Karp pattern matcher. While the implementation is correct,
it can be assumed that it is possible to further optimize the Rabin-Karp software
implementation.

The computer used to calculate these results is an Intel Pentium 4 Xeon with 2.8 GHz
and 1 GB of RAM. There are no significant deviations when using different pattern
sets, therefore average values are shown.

Figure 5.2 depicts the results of the measurements. The table shows the CPU time
spend in userspace, as reported by the time program. Furthermore the resulting
data throughput is calculated and displayed. The rate all column denotes size of
the total trace divided by the time needed, and the rate PL column denotes the size
of application layer payload divided by time needed. The verify column indicates
whether match verification was turned on or off, the rows labeled diff show the
time difference between the runs with and without verification. The num column
indicates the number of patterns.

Running a Rabin-Karp pattern matcher completely in software is slow. It is unlikely
that better optimization would be able to increase the throughput into the gigabit
range. The time needed for match verification however is reasonably low. If an appli-
cation software only verifies matches reported by a hardware matcher, throughput of
1 to 2 Gbps are achievable while searching for 300, resp. 1500 patterns in parallel.

These figures illustrate that the approach presented in this thesis, a Rabin-Karp
hardware pattern matcher with match verification in software, is a feasible solution
in gigabit network environments.
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verify num time rate all rate PL

no 300 3624s 45.9 Mbps 41.5 Mbps
yes 300 3688s 45.1 Mbps 40.7 Mbps
diff 300 64s 2596 Mbps 2348 Mbps
no 1500 3756s 44.2 Mbps 40.0 Mbps
yes 1500 3902s 42.6 Mbps 38.5 Mbps
diff 1500 246s 1138 Mbps 1029 Mbps

Figure 5.2: CPU time required for Rabin-Karp pattern matching in software

5.2 Approximate Pattern Matching

Analyzing the match rate of the approximate pattern matcher is not required, since
unlike the Rabin-Karp matcher, the approximate matcher does not yield any false
positives.

The interesting figure is the amount of CPU time it takes a pure software imple-
mentation to do the approximate matching. The TRE library [TRE] and the PCRE
library [PCR] where considered for this task. The TRE library does approximate
regular expression matching. The PCRE library does Perl compatible regular ex-
pression matching but does not allow for approximate matching. While there are
many other libraries for regular expression matching, no other library for approxi-
mate limited respectively regular expression could be found.

In their default configuration both TRE and PCRE are approximately equally fast.
However the PCRE library supports a pcre study() function call to optimize an ex-
pression. Using this function increases PCRE’s speed almost eightfold. When using
approximate matching with TRE its performance decreases several orders of magni-
tude. Since PCRE is that much faster than TRE, PCRE is used for comparison. To
be able to get measurements with approximate matching turned on, a very simple,
self written approximate pattern matcher with limited expressions is used for this
purpose. This matcher is faster than TRE, although it only uses the basic algorithm
without any of the performance improvements.

Another question is, how multiple patterns can be matched in software. One ap-
proach is to match every packet against every pattern and the second approach is
to combine all patterns into one large pattern by using the branch operator |.

The patterns used for the evaluation are the ones that are used in Section 6 for
application protocol detection. Since PCRE cannot do approximate matching, only
exact matches were searched for when using PCRE. To also see the scalability of
these software implementations, the measurements where done with 9 and with
24 patterns. All measurements have been repeated several times. There was no
significant deviation.
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Pattern Matcher branch num time rate all rate PL

PCRE yes 9 533s 311 Mbps 281 Mbps
PCRE no 9 722s 230 Mbps 208 Mbps
apm n/a 9 8046s 21 Mbps 18.7 Mbps

PCRE yes 24 2052s 81 Mbps 73 Mbps
PCRE no 24 1888s 88 Mbps 80 Mbps
apm n/a 24 21765s 8 Mbps 7 Mbps

Figure 5.3: CPU time required for approximate limited expression matching in software

The computer used to calculate these results is an Intel Pentium 4 Xeon with 2.8 GHz
and 1 GB of RAM. The network trace used is the same as for the Rabin-Karp
algorithm, i.e., a 23GB full trace with approximately 50.8 million packets. The
matcher has only been applied to the packet payload, thus reducing the size to
match to approximately 19 GB.

Figure 5.3 depicts the results of the measurements. The table shows the CPU time
spend in userspace, as report by the time program. Furthermore the resulting data
throughput is calculated and displayed. The rate all column denotes size of the
total trace divided by the time needed, and the rate PL column denotes the size of
application layer payload divided by time needed. The num column indicates the
number of patterns, and the branch column denotes whether the branch operator or
separate patterns are used.

The maximum throughput that could be achieved was only 311 Mbps and that was
by using only 9 different patterns. For regular expression matching, the length of
a pattern influences the runtime quadratically. This is the reason why using the
branch operator for PCRE is faster than separate patterns with 9 patterns, but
slower with 24 patterns. The approximate software matcher is quite slow compared
to PCRE. Using the speed improvements available for approximate pattern matchers
might yield a speed-up for the approximate matcher.
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6 Application Detection Using Hardware Pattern Matching

In this section an example application using approximate hardware pattern matching
to analyze and detect the traffic mix on network links is presented as a proof-of-
concept. We limit the application detector to a proof-of-concept implementation,
because a final implementation would require a significant amount of profiling work
to review the used pattern set and the application layer protocol catalogue we try
to detect. Such profiling is a full project of its own, which goes beyond the scope of
this thesis.

Applications like network intrusion detection systems or traffic accounting applica-
tions need to now which application layer protocol is spoken within a connection.
Most systems use a set of well-known ports, such as those assigned by IANA [IANA],
or those widely used by convention. If a connection does not use one of the recog-
nized ports, this application detection approach breaks down. Examples include
running a Web server on a non standard port or using port 80 for non Web appli-
cation. Some recently developed application layer protocols are in fact designed not
to use fixed ports for their operations. Important examples include the voice-over-ip
software Skype [BS06] or file sharing protocols.

In [DFM+06] Dreger et al. presented and evaluated an approach using pattern
matching for protocol detection. Their application detector is implemented in the
Bro NIDS. The hardware pattern matching implementations presented in this thesis
are not yet appropriate for use in intrusion detection. The Bro NIDS for example
matches patterns on reassembled data streams. If matching is done on a per packet
basis only, attackers would be able evade detection by splitting the compromising
patterns across packet boundaries. For security applications, like NIDS, this must
be accounted for. The packet based hardware pattern matching implementation can
be used to speed up matching however. Since the packets themselves are matched
by the hardware matcher, the NIDS only has to do additional matching on packet
boundaries. A hardware based TCP reassembler, like the one described in Chapter 7
can also be used to reassemble TCP streams.

However a packet based pattern matching approach is sufficient for analyzing the
traffic mix of a network, since most traffic is not malicious and most people do
not try to evade. The goal of such an application is to determine what application
layer protocols contribute to the total traffic observed on a network link. Recall the
traditional approach using port number to distinguish protocols is not sufficient any
more.
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6.1 Environment

The network environment selected for application detection is the MWN, the Munich
Scientific Research Network (Münchner Wissenschaftsnetz). It connects two major
universities and affiliated research institutions to the Internet. The MWN heavily
limits the amount of Peer-to-Peer file sharing traffic using the ipp2p [ipp] module
for Linux netfilter [net]. Thus trying to detect these applications in the MWN is
not much avail. Furthermore we also limit our analysis to TCP protocols. The
applications our detector is looking for are:

• HTTP, the HyperText Transfer Protocol

• iTunes, http connections used for downloading multimedia files from Apple’s
iTunes Music Store

• RSYNC, the RSYNC protocol for synchronizing data archives, like ftp down-
load servers

• RTSP, the RealTime Streaming Protocol

• SMTP, the Simple Mail Transfer Protocol

• NNTP, Network News Transfer Protocol

• IMAP, the Interactive Mail Access Protocol

• IMAP with starttls. Encrypted IMAP connections using the starttls command
to initiate encryption.

• POP3, the Post Office Protocol, version 3

• SSH, the Secure Shell Protocol. SCP, the secure copy protocol is also detected
by the patterns for ssh.

• FTP, the File Transport Protocol. Including passive mode data connections.

• HTTPS, SSL encrypted http connections. These connections are not identi-
fied via pattern matching, rather connections using well-known port 443 are
accounted as HTTPS.

• abnormal termination, connections that are terminated abnormally by a TCP
RST.
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6.2 Design and Implementation

We need to select the patterns we want to use for protocol detection. The Application
Layer Packet Classifier for Linux project [L7f] has an extensive collection of patterns
for application layer protocols detection that are freely to available. The RFCs
specifying protocols are another source of patterns for application detection. The
patterns used for this thesis are based on the patterns from the Application Layer
Packet Classifier for Linux project and patterns derived from RFCs.

In order to determine the application layer protocol spoken within a connection,
the connection state must be held. The application detector uses a hash based
connection table to track connections and keep their state. For every incoming
packet the appropriate connection record is located and the match information of
the packet is read. If a pattern matches, a counter in the connection record is
incremented. When the connection is finally terminated and the connection record
is evicted from the connection table, the match counters are analyzed to determine
which application layer protocol the connection used. For HTTP and FTP the
application detector also determines if the connection used a well known port or not.
Furthermore the well known ports for these protocols are checked to find connections
that use these well known ports but that do not speak the application layer protocol
normally associated with that port. Eviction of connections from the connection
table is solely based on an idle timeout. TCP control flags are not used.

HTTPS connections and connections that terminated abnormally are not identified
by using pattern matching. Since HTTPS connections are encrypted by nature,
using pattern matching is not feasible, but nevertheless HTTPS connections using
the well known port of 443 account for a significant amount of total traffic. Therefore
these connections are identified by their port.

FTP data connections are handled differently. If a FTP control connection is de-
tected, the connection is parsed to determine the IP and port addresses of the
oncoming data connection. This information is then stored and when a new con-
nection arrives, it is checked against the stored information of pending FTP data
connections. If the IP and ports are found, the connection is flagged as FTP data
connection.

6.3 Limitations

Although the MWN is connected to the Internet using a 10Gbps line, the available
monitoring port is only 1 Gbps. At peak times, bandwidth utilization exceeds this
1 Gbps limit. Even if the bandwidth is slightly lower than 1 Gbps the switch’s
monitoring port might not be able to handle all packets. Therefore it is possible
that some connections cannot be classified because some packets of it are missing.
Indeed, we experienced HTTP connections, that were not classified as HTTP. For
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Protocol num conns num pkts volume [GB] volume [%]

HTTP 65836978 6635431736 4983 54.0%
RSYNC 3353 8677947 8 0.1%
RTSP 17076 237144513 195 2.1%
HTTPS 7030145 363987663 133 1.4%
RST 16803477 1562752776 944 10.2%
NNTP 2381 19622304 13 0.1%
SMTP 7370504 230923776 88 1.0%
SSH 4090088 1494978597 1105 12.0%
POP3 169121 143408999 83 0.9%
IMAP 87449 68735463 36 0.4%
IMPS 46718 20257981 15 0.2%
FTP 411512 283577276 193 2.1%
other 80680446 2693226526 1427 15.5%

Figure 6.1: TCP Traffic mix on the MWN using pattern matching for protocol detection

example in one case, the first server reply packet was missing on the monitor port,
but deducting from TCP sequence and acknowledgement numbers, the packet was
seen by the HTTP client.

For our final measurement the application detector was started on a Sunday after-
noon and run for two days. Since the application detector was only run for a short
period the results are not necessarily representative. The time period is sufficient
however to prove the feasibility of our approach. The results returned from the
application detector have not been analyzed deeply. Such analysis would enable us
to refine the patterns to reduce false classifications. However a full analysis of error
rates and of pattern quality would require several iterations of refining patterns and
measuring the new pattern for several days, which goes beyond the scope of this
thesis.

6.4 Results

During first test runs of the application detector, a lot of connections could not be
identified. After analyzing the connections that could not be identified, we refined
the patterns used for protocol detection and we also added more protocols which
lead to the protocol catalogue of Section 6.1.

Figure 6.1 shows the results of the application detector run. The largest amount of
traffic is HTTP, which accounts for more than 50% of the total traffic volume. Of
the 4983 GB of HTTP traffic, 42GB were caused by downloads from Apple’s iTunes
Music store and 163GB of the HTTP traffic was using a port other than the well
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known port 80. Furthermore the application detector also recorded 58GB of traffic
on port 80 that was not classified as HTTP.

SSH connections also amount for a significant amount of network traffic, as could
be expected from a network connecting scientific institutions to the Internet. FTP
is also responsible for a significant amount of traffic, namely 193 GB. 22 GB of those
were FTP connections using a port other than the well known port 21. It must be
noted however, that we also detected approximately 280,000 connections on port
21, that were not detected as FTP. It must be assumed that at least some of these
connections are indeed valid FTP sessions, that were not detected by the patterns
used. A deeper analysis of this issue should be conducted in the future. Since FTP is
used for bulk data transfers, better FTP detection will also lead to a less unclassified
traffic volume.

The large traffic volume caused by connections terminated with a TCP RST flag
is noticeable. Please also note, that these are only connections that could not be
classified before the RST was seen. If a connection can be classified it is accounted
towards the appropriate application layer protocol whether it is terminated normally
or by a RST. We have not analyzed the reason for this high number of connections
terminated abnormally, since this would go beyond the scope of this thesis. An
analysis of these connections is an interesting field for further research however.
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7 Primitive TCP Stream Reassembly

In order to facilitate hardware pattern matching for security applications like NIDS
a more sophisticated approach must be taken. NIDS must be able to match pat-
terns across packet boundaries, i.e., they must be able to do pattern matching on
reassembled TCP streams. Dharmapurikar and Paxson have presented a design for
a robust, hardware based TCP reassembler in [DP05]. For the task at hand however,
the design presented by them is not feasible. Their reassembler is designed to be
able to reassemble all TCP streams with up to one gap (due to reordering or packet
loss), but to do so requires extensive bookkeeping of TCP states, implementing TCP
state machines and using reassemble buffers in DRAM. All together this is too costly
in terms of complexity and resource requirements.

The goal for TCP reassembly with regard to hardware pattern matching is to be able
to match across packet boundaries. Furthermore the hardware reassembly does not
necessarily have to reassemble all TCP streams. It can be argued, that reassembling
the bulk of TCP connections and running pattern matching on these connections is
sufficient, since the software application utilizing the pattern matching can be used
to reassemble and match connections that could not be handled by the hardware.
If handling all non reassembled connections is too expensive, an application could
randomly select some of the non reassembled connections for analysis and thus
making it impossible for an attacker to predict if his connection will be matched or
not. The hardware still does pattern matching on single packets for non reassembled
connections, so the software application only has to search for pattern matches on
packet boundaries of these connections.

The TCP reassembler presented here, is able to reassemble TCP connections that are
received in order without any gaps and that are carried in unfragmented IP packets.
All other situations have to be handled by the application software. According to
Dharmapurikar and Paxson [DP05] reordering occurs only in 2 − 3% of all TCP
traffic, while Jaiswal et al. [JID+03] found that reordering occurs in 3 − 5% of all
TCP traffic. Therefore handling connections with reordering in software is feasible.
IP fragmentation is not an issue, since all major TCP stacks set the Don’t Fragment
flag for IP packets, so the number of fragmented IP packets carrying TCP data is
low.

Reassembling only in-order TCP connections enables a hardware reassembler design
which only needs small reassembly buffers and which does not have to keep extensive
state for TCP connections, like sequence numbers. Having only small reassembly
buffers makes it feasible to use SRAM memory for the buffers.
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The TCP reassembler requires external components. A TCAM is used to hash
TCP/IP connection tuples and a SRAM is used for reassembly buffers. DAG Co-
Processor cards feature an 4.5Mbit CAM and a 18 Mbit SRAM (approximately
2 MB). When using the TCAM in a 144bit×32k entries configuration, the reassem-
bler will be able to keep state for 32,000 parallel TCP connections. Both directions
of a connection are mapped to the same CAM entry to maximize TCAM utiliza-
tion. Of course, the directions have to be distinguished for the actual reassembly
operation.

The design is not verified in hardware. The TCAM interface and the logic to timeout
old connections is not implemented yet. The other parts of the TCP reassembler
are implemented in VHDL and simulate successfully. For the simulation a software
CAM is used to simulate the complete TCP reassembler. Applying the approximate
pattern matcher to reassembled TCP streams is working in simulation too. The
VHDL code was implemented for synthesis and should therefore be synthesizeable.
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8 Conclusion

This chapter briefly summarizes this thesis and gives an idea of what might be
interesting in the future in the field of hardware pattern matching for network traffic
analysis.

8.1 Summary

In this thesis we have analyzed possibilities for hardware based pattern matching
in FPGAs to speed up applications in the field of network traffic analysis. Var-
ious algorithms for pattern matching have been analyzed and their suitability for
hardware implementation has been assessed. Two approaches were chosen for imple-
mentation— a Rabin-Karp based exact pattern matcher and an approximate pattern
matcher with limited expressions. The implementation was done on Endace DAG
network monitoring cards, which features FPGAs from the Xilinx VirtexII and Vir-
tex4 families.

The implemented pattern matchers were analyzed and evaluated and we showed,
that using hardware for pattern matching is feasible and can lead to significant
speed improvements over pure software solution. To further demonstrate the appli-
cability of hardware pattern matching, an example application for protocol analysis
and accounting was developed and used to analyze the traffic mix on the Inter-
net connection of the MWN, the Munich Scientific Research Network (Münchner
Wissenschaftsnetz).

Furthermore the importance of TCP stream reassembly in conjunction with pattern
matching was discussed. We analyzed the complexity of TCP reassembly in hard-
ware and found that it is feasible to use a system, that only reassembles in-order
TCP streams in hardware and handles the remaining TCP streams in software.

8.2 Outlook

An interesting project would be the integration of the hardware pattern matcher
with software applications, that do pattern matching in software like the Bro NIDS.
Especially the dynamic protocol detection mechanism and the IRC botnet detection
mechanism [DFM+06] will benefit from hardware pattern matching. It would also
be interesting to analyze what combination of Rabin-Karp and approximate pattern
matching is best. Are two separate implementations good or should both matchers
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be combined in one system resp. one FPGA? How many FPGA resources should
be allocated to the Rabin-Karp matcher and how many to the approximate pattern
matcher?

The integration of hardware based TCP reassembly together with hardware pattern
matching is an interesting field for further investigation too. What will be the
benefits of the proposed TCP reassembler? Using a different approach for TCP
reassembly might also yield interesting results.

The application detector framework sketched in Section 6 also shows paths for future
research. The reason for the large amount of TCP connections that terminated
abnormally can be analyzed. Furthermore the application detector itself can be
enhanced to a fully fledged application, which requires reviewing and profiling the
pattern sets and application layer protocol catalogue, that we want to match.
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A Glossary

ASIC Application Specific Integrated Circuit
BlockRAM 16kbit memory modules availabe in Xilinx FPGAs
CAM Content Addressable Memory
DRAM Dynamic Random Access Memory
EOD End Of Data. A one bit signal send along with a datapath

to indicate the last word of data of a packet.
ERF Exentsible Record Format
FPGA Field Programmable Gate Array
IDS Intrusion Detection System
ISP Internet Service Provider
LUT Lookup Table, one of the internal building blocks of FPGAs
NIDS Network Intrusion Detection System
RFC Request for Comments
SDRAM Synchronous DRAM
slice One of the internal building blocks of blocks of FPGAs. A

slice contains 2 LUTs and 2 Flip Flops
SOD Start Of Data. A one bit signal send along with a datapath

to indicate the first word of data of a packet.
SRAM Static Random Access Memory
TCAM Ternary Content Adressable Memory
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B Short Introduction to FPGAs

This chapter gives a very short introduction to FPGAs. Another good introduction
to FPGAs can be found in the Wikipedia [Wik07b].

FPGA is the abbreviation for Field Programmable Gate Array. It contains pro-
grammable logic blocks and a programmable interconnection network between the
logic blocks. An FPGA is in general slower than an ASIC, but it has the advantage
of being programmable in the field. I.e., a FPGA can reprogrammed after the circuit
board or appliance containing the FPGA has been deployed.

The logic blocks inside a FPGA are called slices. These slices can be interconnected
pretty much at will using the interconnection or routing network. The main com-
ponents on a slice in a Xilinx FPGA are two FlipFlops and two LUTs. FlipFlops
are the storage elements resp. registers required for synchronous logic design. The
LUTs are used to implement combinatorial logic functions. A LUT has four inputs
and one output and can be used to implement any logic function or truth table with
up to four inputs. Besides LUTs and FlipFlops a slice also contains other compo-
nents, like multiplexers, carry-chains, etc. The calculation of the carry bits during
an arithmetic operation, like an addition, is quite time consuming. Since arithmetic
operations are rather common and using LUTs to implement the carry logic results
in long propagation delays, dedicated logic to calculate carry bits, the carry chains,
are embedded on the slices. A Xilinx VirtexII-2000 FPGA for example contains
about 10750 slices.

Next to slices and the routing network FPGAs also contain other logic blocks in lower
numbers. For example Xlinix VirtexII FPGAs have dedicated SRAM resources,
called BlockRAMs, and dedicated multiplier circuits. Some modern FPGAs also
contain highly integrated logic blocks, like CPU cores, Ethernet transceivers and
PCI cores.

Logic design for FPGAs is in general done using a Hardware Description Language.
The most common examples of such languages are VHDL and Verilog. The tool
chain to translate a VHDL or Verilog source file into an image that can be loaded
into a FPGA is roughly as follows:

synthesis The source code is transformed into fundamental logic functions, like
FlipFlops and combinatorial blocks.

map The output from the synthesis phase is taken and mapped onto the logic re-
sources (LUTs, BlockRAMs, etc.) available in the FPGA.
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place-and-route The logic blocks are finally placed and interconnected. The place-
and-route phase must also ensure, that timing constraints are met.

Originally VHDL was developed for logic simulation and verification. Therefore
VHDL allows language constructs, that work perfectly well in simulation but that
cannot be translated into hardware. VHDL code that can be translated into hard-
ware is called synthesizeable, while other code, is called not synthesizeable.
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