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Motivating Examples

Vast wireless network of mobile temperature sensors, floating on
the ocean’s surface: Sensor Networks

Metropolitan-area network comprised of customer-owned and
-operated radios: Rooftop Networks
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4 Scalability through Geography h

How should we build networks with a mix of these characteristics?
e Mobility
e Scale (number of nodes)
e Lack of static hierarchical structure

Use In system design to achieve scalability. Examples:

e Greedy Perimeter Stateless Routing (GPSR): scalable
geographic routing for mobile networks [Karp and Kung, 2000]

e GRID Location Service (GLS): a scalable location database for
mobile networks [Li et al., 2000]

e Geography-Informed Energy Conservation [Xu et al., 2001]
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GPSR Overview

GPSR’s Performance on Sparse Networks: Simulation Results
Planar Graphs and Radio Obstacles: Challenge and Approaches
Geographic Traffic Provisioning and Engineering

Conclusions
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4 GPSR: Greedy Forwarding

Nodes learn immediate neighbors’ positions through
beacons/piggybacking on data packets:

Locally optimal, forwarding choice at a node:

Forward to the neighbor geographically closest to the
destination
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Greedy Forwarding Failure: Voids

When the intersection of a node’s circular radio range and the
circle about the destination on which the node sits is empty of
nodes, greedy forwarding is impossible

Such a region is a void:
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Node Density and Voids
Existing and Found Paths, 1340 m x 1340 m Region
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GPSR: Perimeter Mode for Void Traversal

the edge that crosses xD

Repeat with the next closer face along xD, &c.

Forward where possible, in where not

o

Traverse face closer to D along xD by right-hand rule, until reaching
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Challenge: Sparse Networks

Greedy forwarding approximates closely on dense
networks

Perimeter-mode forwarding detours around planar faces; not
shortest-path

Greedy forwarding clearly under
mobility

Perimeter-mode forwarding less robust against packet looping on
mobile networks; faces change dynamically

Perimeter mode really a recovery technique for greedy forwarding
failure; greedy forwarding has more desirable properties

How does GPSR perform on sparser networks, where perimeter
mode is used most often?

o
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Simulation Environment

Nodes Region Density CBR Flows
50 1500 m x 300 m | 1 node /9000 m? 30
200 3000 m x 600 m | 1 node /9000 m? 30
50 1340 m x 1340 m | 1 node / 35912 m? 30

Pause Time: 0O, 30, 60, 120 s

Motion Rate: [1, 20] m/s

GPSR Beacon Interval;: 1.5 s

Data Packet Size: 64 bytes

CBR Flow Rate: 2 Kbps

Simulation Length: 900 s

~

ns-2 with wireless extensions [Broch et al., 1998]: full 802.11 MAC,
physical propagation; allows comparison of results
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Packet Delivery Success Rate (50, 200; Dense)
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Packet Delivery Success Rate (50; Sparse)
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Path Length (50; Dense)
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Path Length (50 nodes, Sparse)
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Planar Graphs and Radio Obstacles: Challenge and Approaches
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Network Graph Planarization

Relative Neighborhood Graph (RNG) [Toussaint, ’80] and Gabriel
Graph (GG) [Gabriel, ’69] are long-known planar graphs

Assume an edge exists between any pair of nodes separated by
less than a threshold distance (i.e., the nominal radio range)
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Planarized Graphs: Example

200 nodes, placed uniformly at random on a 2000-by-2000-meter
region; radio range 250 meters
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Full Network GG Subgraph RNG Subgraph
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4 Challenge: Radio-Opaque Obstacles and

Planarization

Obstacles violate assumption that neighbors determined purely by
distance:

AN AN
NN

Full Network GG and RNG Subgraph

In presence of obstacles, planarization can disconnect
destinations!
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Coping with Obstacles

Eliminate edges only in presence of witnesses; edge
endpoints must agree

Full Graph Mutual GG Mutual RNG

but doesn’t planarize completely

Forward through a randomly chosen partner node (location)

Compensate for variable path loss with variable transmit power
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Traffic Concentration Demands Provisioning

If we assume uniform traffic distribution, flows tend to cross the
center of the network

All link capacities symmetric!
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Geographic Network Provisioning

In a dense wireless network, position is correlated with capacity

link capacity and dense connectivity

Route congested flows’ packets through a
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Conclusions

On sparse networks, GPSR delivers packets , most of
which take paths of

Non-uniform radio ranges complicate planarization;
and may help

Geographically routed wireless networks support a new,
family of traffic engineering strategies, that leverage
spatial reuse to alleviate congestion

Use of geographic information offers diverse scaling benefits in
pervasive network systems
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